精英家教网 > 高中数学 > 题目详情
4.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1(-c,0),F2(c,0),A,B是圆(x+c)2+y2=4c2与C位于x轴上方的两个交点,且F1A∥F2B,则双曲线C的离心率为$\frac{3+\sqrt{17}}{4}$.

分析 连接BF1,AF2,由双曲线的定义,可得|AF2|=2a+2c,|BF2|=2c-2a,在△AF1F2中,和△BF1F2中,运用余弦定理求得cos∠AF1F2,os∠BF2F1,由F1A∥F2B,可得∠BF2F1+∠AF1F2=π,即有cos∠BF2F1+cos∠AF1F2=0,化简整理,由离心率公式计算即可得到所求值.

解答 解:连接BF1,AF2
由双曲线的定义,可得|AF2|-|AF1|=2a,
|BF1|-|BF2|=2a,
由|BF1|=|AF1|=2c,
可得|AF2|=2a+2c,|BF2|=2c-2a,
在△AF1F2中,可得cos∠AF1F2=$\frac{4{c}^{2}+4{c}^{2}-(2a+2c)^{2}}{2•2c•2c}$=$\frac{{c}^{2}-2ac-{a}^{2}}{2{c}^{2}}$,
在△BF1F2中,可得cos∠BF2F1=$\frac{4{c}^{2}+(2c-2a)^{2}-4{c}^{2}}{2•2c•(2c-2a)}$=$\frac{c-a}{2c}$,
由F1A∥F2B,可得∠BF2F1+∠AF1F2=π,即有cos∠BF2F1+cos∠AF1F2=0,
可得$\frac{{c}^{2}-2ac-{a}^{2}}{2{c}^{2}}$+$\frac{c-a}{2c}$=0,化为2c2-3ac-a2=0,
得2e2-3e-1=0,解得e=$\frac{3+\sqrt{17}}{4}$(负的舍去),
故答案为:$\frac{3+\sqrt{17}}{4}$.

点评 本题考查双曲线的离心率的求法,注意运用双曲线的定义和三角形的余弦定理,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设向量$\overrightarrow a,\overrightarrow b,\overrightarrow c$满足$|{\overrightarrow a}|=\sqrt{3}$,$|{\overrightarrow b}|=3\sqrt{3}$,若向量$\overrightarrow a在\overrightarrow b$方向上的投影为$\frac{{\sqrt{3}}}{2}$,且向量$\overrightarrow a-\overrightarrow c$与向量$\overrightarrow b-\overrightarrow c$的夹角为120°,则$|{\overrightarrow c}$|的最大值等于$2\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.数列1,2,$\sqrt{7}$,$\sqrt{10}$,$\sqrt{13}$的第六项是(  )
A.6B.4C.$\sqrt{15}$D.$\sqrt{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知各项均为正数的数列{an}的前n项和Sn,且Sn,an,1成等差数列,则an=2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),点(0,b)到右焦点F的距离与它到直线l:x=4的距离比恰为离心率$\frac{1}{2}$,
(1)求椭圆C的方程;
(2)设P(1,$\frac{3}{2}$),AB是经过右焦点F的任一弦(不经过点P),设直线AB与l相交于点M,记PA,PB,PM的斜率分别为k1,k2,k3,问:是否存在常数λ,使得k1+k2=λk3?若存在,求出λ的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.f(x)=$\sqrt{(x-1)\sqrt{{x^2}-x-2}}$的定义域为{-1}∪{x|x≥2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设A={(m,n)|0<m<2,0<n<2},则任取(m,n)∈A,关于x的方程$\frac{m}{4}$x2+x+n=0有实根的概率为(  )
A.$\frac{1+2ln2}{4}$B.$\frac{1+ln2}{2}$C.$\frac{3-2ln2}{4}$D.$\frac{1-ln2}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点为(0,2),且离心率为$\frac{\sqrt{3}}{2}$.求椭圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行下边的程序框图,则输出的n等于(  )
A.4B.5C.6D.7.

查看答案和解析>>

同步练习册答案