精英家教网 > 高中数学 > 题目详情
19.在△ABC中,角A,B,C的对边分别为a,b,c,且满足向量$\overrightarrow m$=(cosA,cosB),$\overrightarrow n$=(a,2c-b),$\overrightarrow m$∥$\overrightarrow n$.
(I)求角A的大小;
(II)若a=2$\sqrt{5}$,求△ABC面积的最大值.

分析 (I)根据平面向量的共线定理,利用正弦定理,即可求出A的值;
(2)根据余弦定理,利用基本不等式,即可求出三角形面积的最大值.

解答 解:(I)∵向量$\overrightarrow m$=(cosA,cosB),$\overrightarrow n$=(a,2c-b),$\overrightarrow m$∥$\overrightarrow n$,
∴(2c-b)cosA=acosB,
由正弦定理得:(2sinC-sinB)cosA=sinAcosB,
整理得2sinCcosA=sin(A+B)=sinC;
在△ABC中,sinC≠0,∴cosA=$\frac{1}{2}$,
∵A∈(0,π),故$A=\frac{π}{3}$;
(2)由余弦定理,cosA=$\frac{{b}^{2}{+c}^{2}{-a}^{2}}{2bc}$=$\frac{1}{2}$,
又a=2$\sqrt{5}$,∴b2+c2-20=bc≥2bc-20,
得bc≤20,当且仅当b=c时取到“=”;
∴S△ABC=$\frac{1}{2}$bcsinA≤5$\sqrt{3}$,
所以三角形面积的最大值为5$\sqrt{3}$.

点评 本题考查了平面向量的共线定理和正弦、余弦定理的应用问题,也考查了基本不等式的应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.f(x)=$\sqrt{(x-1)\sqrt{{x^2}-x-2}}$的定义域为{-1}∪{x|x≥2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设常数a∈R,集合A={x|(x-1)(x-a)≥0},B={x|x≥a-2},若A∪B=R,则a的取值范围为(  )
A.(-∞,3)B.(-∞,3]C.(3,+∞)D.[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=cos$\frac{x}{2}$-tanx在[0,2017π]上的零点的个数为(  )
A.2015B.2016C.2017D.2018

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.执行下边的程序框图,则输出的n等于(  )
A.4B.5C.6D.7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知过定点P(-3,4)的直线l与两坐标轴所围成的三角形的面积为3,求满足条件的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若y=f(x)为一次函数,且f[f(x)]=x-2,则f(x)=x-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在等差数列{an}中,a1+a2=7,a3=8.令bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,数列{bn}的前n项和为Tn
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设α、β是两个平面,l、m是两条直线,下列命题中,不能判断α∥β的有(  )
①l?α,m?α,且l∥β,m∥β;
②l?α,m?β,且m∥α;
③l∥α.m∥β且l∥m;
④l⊥α,m⊥β,且l∥m.
A.①②B.③④C.①②③D.①②③④

查看答案和解析>>

同步练习册答案