精英家教网 > 高中数学 > 题目详情
4.已知过定点P(-3,4)的直线l与两坐标轴所围成的三角形的面积为3,求满足条件的直线l的方程.

分析 设直线的斜率为k,因为直线过(-3,4)得到直线的方程,求出直线l与x轴、y轴上的截距,由直线l与两坐标轴围成的三角形的面积为3列出方程求出k即可.

解答 解:设直线l的方程是y=k(x+3)+4,
它在x轴、y轴上的截距分别是-$\frac{4}{k}$-3,3k+4,
由已知,得|(3k+4)(-$\frac{4}{k}$-3)|=6,
可得(3k+4)(-$\frac{4}{k}$-3)=6或-6,
解得k1=-$\frac{2}{3}$或k2=-$\frac{8}{3}$.
所以直线l的方程为:2x+3y-6=0或8x+3y+12=0.

点评 学生求直线l与两坐标轴围成的三角形的面积时应注意带上绝对值,会根据直线的一般方程得到直线与两坐标轴的截距.会根据已知条件求直线方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.sin77°cos47°-sin13°cos43°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“x≠2或y≠3”是“x+y≠5”的(  )
A.充分必要条件B.充分而不必要条件
C.必要而不充分条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=e|x-m|(m为常数),若f(x)在区间[2,+∞)上是增函数,则m的取值范围是(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c,且满足向量$\overrightarrow m$=(cosA,cosB),$\overrightarrow n$=(a,2c-b),$\overrightarrow m$∥$\overrightarrow n$.
(I)求角A的大小;
(II)若a=2$\sqrt{5}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知集合A={x|2≤x<7},B={x|3<x≤10},C={x|a-5<x<a}.
(1)求A∩B,A∪B;
(2)若非空集合C⊆(A∪B),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A={x∈R|log${\;}_{\frac{1}{2}}}$(x-2)≥-1},B={x∈R|$\frac{2x+6}{3-x}$≥1},则A∩B=(  )
A.[-1,3)B.[-1,3]C.D.(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.给出下列从A到B的对应:
①A=N,B={0,1},对应关系是:A中的元素除以2所得的余数
②A={0,1,2},B={4,1,0},对应关系是f:x→y=x2
③A={0,1,2},B={0,1,$\frac{1}{2}$},对应关系是f:x→y=$\frac{1}{x}$
其中表示从集合A到集合B的函数有(  )个.
A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N*),则数列{nan}项和Tn(n-1)•2n+1.

查看答案和解析>>

同步练习册答案