精英家教网 > 高中数学 > 题目详情
14.sin77°cos47°-sin13°cos43°=$\frac{1}{2}$.

分析 根据诱导公式和两角和与差的公式化简即可.

解答 解:根据诱导公式:sin13°=sin(90°-77°)=cos77°;cos43°=cos(90°-47°)=sin47°
∴sin77°cos47°-sin13°cos43°=sin77°cos47°-sin47°cos77°=sin(77°-47°)=sin30°=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$

点评 本题考查诱导公式和两角和与差的公式的化简计算变形能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知cosx=-$\frac{\sqrt{2}}{10}$,x∈($\frac{π}{2}$,π).
(1)求sinx的值;
(2)求tan(2x+$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知sinA+sinB+sinC=0,cosA+cosB+cosC=0,求证:cos2A+cos2B+cos2C=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)(x∈R,且x>0),对于定义域内任意x、y恒有f(xy)=f(x)+f(y),并且x>1时,f(x)>0恒成立.
(1)求f(1);
(2)若x∈[1,+∞)时,不等式f($\frac{{{x^2}+2x+a}}{x}$)>f(1)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.f(x)=$\sqrt{(x-1)\sqrt{{x^2}-x-2}}$的定义域为{-1}∪{x|x≥2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知椭圆的焦点是F1(0,-$\sqrt{3}$),F2(0,$\sqrt{3}$),离心率e=$\frac{{\sqrt{3}}}{2}$,若点P在椭圆上,且$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=$\frac{2}{3}$,则∠F1PF2的大小为(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图的程序框图,若任意输入区间[1,18]中的整数x,则输出的x大于39的概率是$\frac{7}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)是定义在D上的函数,若存在区间[m,n]⊆D,使函数f(x)在[m,n]上的值域恰为[km,kn],则称函数f(x)是k型函数.给出下列说法:
①函数f(x)=$\frac{3x-1}{x}$不可能是k型函数;
②若函数y=-$\frac{1}{2}$x2+x是3型函数,则m=-4,n=0;
③设函数f(x)=x3+2x2+x(x≤0)是k型函数,则k的最小值为$\frac{4}{9}$;
④若函数y=$\frac{({a}^{2}+a)x-1}{{a}^{2}x}$(a≠0)是1型函数,则n-m的最大值为$\frac{2\sqrt{3}}{3}$.
下列选项正确的是(  )
A.①③B.②③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知过定点P(-3,4)的直线l与两坐标轴所围成的三角形的面积为3,求满足条件的直线l的方程.

查看答案和解析>>

同步练习册答案