| A. | (-∞,3) | B. | (-∞,3] | C. | (3,+∞) | D. | [3,+∞) |
分析 当a>1时,代入解集中的不等式中,确定出A,求出满足两集合的并集为R时的a的范围;当a=1时,易得A=R,符合题意;当a<1时,同样求出集合A,列出关于a的不等式,求出不等式的解集得到a的范围.综上,得到满足题意的a范围.
解答 解:当a>1时,A=(-∞,1]∪[a,+∞),B=[a-2,+∞)
若A∪B=R,则a-2≤1,
∴1<a≤3;
当a=1时,易得A=R,此时A∪B=R;
当a<1时,A=(-∞,a]∪[1,+∞),B=[a-2,+∞),
若A∪B=R,则a-2≤a,显然成立,
∴a<1;
综上,a的取值范围是(-∞,3].
故选B.
点评 此题考查了并集及其运算,二次不等式,以及不等式恒成立的条件,熟练掌握并集的定义是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | f(x)在x=1处取到极大值 | B. | f(x)在x=1处取到极小值 | ||
| C. | f(x)在x=0处取到极大值 | D. | f(x)在x=0处取到极小值 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5+2$\sqrt{5}$ | B. | -5-2$\sqrt{5}$ | C. | -2+2$\sqrt{5}$ | D. | 5-2$\sqrt{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com