精英家教网 > 高中数学 > 题目详情
2.设函数f(x)=x2+ax+b,已知不等式f(x)<0的解集为{x|1<x<3},
(1)若不等式f(x)≥m的解集为R,求实数m的取值范围;
(2)若f(x)≥mx对任意的实数x≥2都成立,求实数m的取值范围.

分析 (1)由不等式f(x)<0的解集为{x|1<x<3},可以确定f(x),不等式f(x)≥m的解集为R,等价于m≤f(x)min
(2)由恒成立问题转化为根的个数以及对称轴和端点值问题.

解答 解:(1)∵函数f(x)=x2+ax+b,
且f(x)<0的解集为{x|1<x<3},
∴a=-4,b=3
∴f(x)=x2-4x+3,
∴f(x)=(x-2)2-1,
∴f(x)最小值为-1
∴不等式f(x)≥m的解集为R,实数m的取值范围为m≤-1
(2)∵f(x)≥mx对任意的实数x≥2都成立,
即x2-4x+3≥mx对任意的实数x≥2都成立,
两边同时除以x得到:x+$\frac{3}{x}$-4≥m对任意的实数x≥2都成立,
x≥2时,x+$\frac{3}{x}$-4≥-$\frac{1}{2}$,
∴m≤-$\frac{1}{2}$,
综上所述,m≤-$\frac{1}{2}$.

点评 本题考查转化问题以及根的个数以及对称轴和端点值问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.已知圆心坐标为(-1,1),半径是2$\sqrt{3}$的圆的标准方程:(x+1)2+(y-1)2=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若A,B是锐角三角形ABC的两个内角,则以下选项中正确的是(  )
A.sinA<sinBB.sinA<cosBC.tanAtanB>1D.tanAtanB<1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在等差数列{an}中,a3,a15是方程x2-6x+8=0的两个根,则a7+a8+a9+a10+a11为(  )
A.12B.13C.14D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果二次函数的图象经过原点和点(-4,0),则该二次函数图象的对称轴方程为x=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.关于x的不等式ax2+2bx+1≥0的解集为R,则a+2b的最小值是(  )
A.-2B.-1C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求证:cos$\frac{2π}{2n+1}$+cos$\frac{4π}{2n+1}$+…+cos$\frac{2nπ}{2n+1}$=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.复数z满足zi=1+3i,则复数z在复平面内所对应的点的坐标是(3,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某花店每天以每枝6元的价格从农场购进若干枝玫瑰花,然后以每枝12元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:
日需求量n14151617181920
频数10201616151310
(i)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于92元的概率.

查看答案和解析>>

同步练习册答案