精英家教网 > 高中数学 > 题目详情
10.在等差数列{an}中,a3,a15是方程x2-6x+8=0的两个根,则a7+a8+a9+a10+a11为(  )
A.12B.13C.14D.15

分析 根据等差数列的通项公式与一元二次方程根与系数个关系,即可求出结果.

解答 解:等差数列{an}中,a3,a15是方程x2-6x+8=0的两个根,
∴a3+a15=2a9=6,
∴a9=3;
∴a7+a8+a9+a10+a11=(a7+a11)+(a8+a10)+a9=5a9=5×3=15.
故选:D.

点评 本题考查了根与系数的应用问题,也考查了等差数列的性质与应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=a•ex+x2-bx(a,b∈R,e=2.71828…是自然对数的底数),其导函数为y=f′(x).
(1)设a=-1,若函数y=f(x)在R上是单调减函数,求b的取值范围;
(2)设b=0,若函数y=f(x)在R上有且只有一个零点,求a的取值范围;
(3)设b=2,且a≠0,点(m,n)(m,n∈R)是曲线y=f(x)上的一个定点,是否存在实数x0(x0≠m),使得f(x0)=f′($\frac{{x}_{0}+m}{2}$)(x0-m)+n成立?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知sinθ+cosθ=$\frac{1}{5}$,θ∈($\frac{π}{2}$,π),求tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=x2-2x+2,f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N*,则f5(x)在[0,$\frac{3}{2}$]上的最小值,最大值分别是(  )
A.0,1B.0,2C.1,2D.1,4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x>0,y>0,且2x+y=xy.则x+2y的最小值为(  )
A.5B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.与角-$\frac{π}{3}$终边相同的角是(  )
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{5π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=x2+ax+b,已知不等式f(x)<0的解集为{x|1<x<3},
(1)若不等式f(x)≥m的解集为R,求实数m的取值范围;
(2)若f(x)≥mx对任意的实数x≥2都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.二次函数y=ax2+bx+c的图象被x轴所截线段的长度为$\frac{\sqrt{{b}^{2}-4ac}}{|a|}$,二次函数y=x2+kx+k,k∈[4,6]的图象被x轴所截线一段长度的取值范围是[0,2$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知直线l1为曲线y=f(x)=x2+x-2在点(1,0)处的切线,l2为该曲线的另外一条切线,且l1⊥l2,求直线l2的方程.

查看答案和解析>>

同步练习册答案