分析 求出原函数的导函数,得到f′(1)=3,即直线l1的斜率,再设直线l2过曲线上点B(b,b2+b-2),得到曲线在x=b处的导数,由l1⊥l2列式求得b,则直线l2的方程可求.
解答 解∵f′(x)=2x+1,∴f′(1)=3,
∴直线l1的斜率为3.
设直线l2过曲线上点B(b,b2+b-2),
∵f′(b)=2b+1,
∴直线l2的方程为y-(b2+b-2)=(2b+1)(x-b),即y=(2b+1)x-b2-2.
又l1⊥l2,∴3(2b+1)=-1,即b=-$\frac{2}{3}$.
∴直线l2的方程为$y=-\frac{1}{3}x-\frac{22}{9}$.
即3x+9y+22=0.
点评 本题考查利用导数求曲线上过某点的切线方程,曲线上过某点的切线的斜率,就是函数在该点处的导数值,考查两直线垂直与斜率的关系,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | 13 | C. | 14 | D. | 15 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4 | B. | 4 | C. | -1 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日需求量n | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 频数 | 10 | 20 | 16 | 16 | 15 | 13 | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com