分析 (1)当a=1时,不等式f2(x)≤2,即(x-1)2≤2,即可求不等式f2(x)≤2的解集;
(2)x≤0,g(x)单调递减,x≥a,g(x)单调递增,可得g(x)min=2a=4,即可求实数a的值
解答 解:(1)当a=1时,不等式f2(x)≤2,即(x-1)2≤2,
∴1-$\sqrt{2}$≤x≤1+$\sqrt{2}$,
∴不等式的解集为{x|1-$\sqrt{2}$≤x≤1+$\sqrt{2}$};
(2)∵a>0,∴g(x)=|2x|+2|x-a|=$\left\{\begin{array}{l}{4x-2a,x≥a}\\{2a,0<x<a}\\{-4x+2a,x≤0}\end{array}\right.$,
∴x≤0,g(x)单调递减,x≥a,g(x)单调递增,
∴g(x)min=2a=4,∴a=2.
点评 本题考查不等式的解法,考查函数的最小值,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | n=1验证不正确 | B. | 归纳假设不正确 | ||
| C. | 从n=k到n=k+1的推理不正确 | D. | 证明过程完全正确 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{9}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{18}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16}{9}$ | B. | $\frac{9}{16}$ | C. | -$\frac{16}{9}$ | D. | -$\frac{9}{16}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 6 | D. | 12 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x=$\frac{7π}{12}$ | B. | x=$\frac{π}{2}$ | C. | x=$\frac{5π}{12}$ | D. | $x=\frac{π}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com