10£®¶ÔÓÚ²»µÈʽ$\sqrt{{n}^{2}+1}$£¼n+1£¨n¡ÊN*£©£¬Ä³Ñ§ÉúÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ÈçÏ£º
£¨1£©µ±n=1ʱ£¬$\sqrt{{1}^{2}+1}$£¼1+1£¬²»µÈʽ³ÉÁ¢£»
£¨2£©¼ÙÉèµ±n=k£¨k¡ÊN*£©Ê±²»µÈʽ³ÉÁ¢£¬¼´$\sqrt{{k}^{2}+1}$£¼k+1£¬Ôòµ±n=k+1ʱ£¬$\sqrt{£¨k+1£©^{2}+1}$=$\sqrt{{k}^{2}+2k+2}$$£¼\sqrt{{k}^{2}+2k+2+2k+2}$=$\sqrt{£¨k+2£©^{2}}$=£¨k+1£©+1£»ËùÒÔµ±n=k+1ʱ£¬²»µÈʽ$\sqrt{{n}^{2}+1}$£¼n+1³ÉÁ¢£®
ÉÏÊöÖ¤Ã÷ÖУ¨¡¡¡¡£©
A£®n=1ÑéÖ¤²»ÕýÈ·B£®¹éÄɼÙÉè²»ÕýÈ·
C£®´Ón=kµ½n=k+1µÄÍÆÀí²»ÕýÈ·D£®Ö¤Ã÷¹ý³ÌÍêÈ«ÕýÈ·

·ÖÎö ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷ÎÊÌâµÄ²½ÖèÊÇ£ºµÚÒ»²½£¬ÑéÖ¤µ±n=n0ʱÃüÌâ³ÉÁ¢£¬µÚ¶þ²½¼ÙÉèµ±n=kʱÃüÌâ³ÉÁ¢£¬ÄÇôÔÙÖ¤Ã÷µ±n=k+1ʱÃüÌâÒ²³ÉÁ¢£®¹Ø¼üÊǵڶþ²½ÖÐÒª³ä·ÖÓÃÉϹéÄɼÙÉèµÄ½áÂÛ

½â´ð ½â£ºµ±n=1ʱ£¬×ó±ß=$\sqrt{{1}^{2}+1}$=2£¬ÓÒ±ß=1+1=2£¬¹Êµ±n=1ʱ£¬²»µÈʽ³ÉÁ¢£¬
¼ÙÉèµ±n=k£¨k¡ÊN*£©Ê±²»µÈʽ³ÉÁ¢£¬¼´$\sqrt{{k}^{2}+1}$£¼k+1£¬¼´k2+1£¼£¨k+1£©2£¬
Ôòµ±n=k+1ʱ£¬$\sqrt{£¨k+1£©^{2}+1}$=$\sqrt{{k}^{2}+2k+2}$£¼$\sqrt{£¨k+1£©^{2}+2k+1}$=$\sqrt{£¨k+1£©^{2}+2£¨k+1£©+1-2}$=$\sqrt{£¨k+2£©^{2}-2}$£¼$\sqrt{£¨k+2£©^{2}}$=k+2=£¨k+1£©+1£¬
¹Êµ±n=k+1ʱ£¬²»µÈʽ³ÉÁ¢£¬
×ÛÉÏËùÊö£¬²»µÈʽ$\sqrt{{n}^{2}+1}$£¼n+1£¨n¡ÊN*£©£¬
ÓÉ´Ë¿ÉÒÔÅжϴÓn=kµ½n=k+1µÄÍÆÀí²»ÕýÈ·£¬ÀíÓÉÊÇ£¬Ã»ÓÐÓÃÉϼÙÉ裬
¹ÊÑ¡£ºC

µãÆÀ ±¾Ì⿼²éÊýѧ¹éÄÉ·¨µÄ˼Ï룬ӦÓÃÖÐҪעÒâµÄÊÇÓÃÉϹéÄɼÙÉèµÄ½áÂÛ£¬·ñÔò»áµ¼Ö´íÎó£®ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýy=f£¨x£©£¬Èô´æÔÚʵÊým¡¢k£¨m¡Ù0£©£¬Ê¹µÃ¶ÔÓÚ¶¨ÒåÓòÄÚµÄÈÎÒâʵÊýx£¬¾ùÓÐm•f£¨x£©=f£¨x+k£©+f£¨x-k£©³ÉÁ¢£¬Ôò³Æº¯Êýf£¨x£©µÄ¡°¿Éƽºâ¡±º¯Êý£¬ÓÐÐòÊý¶Ô£¨m£¬k£©³ÆÎªº¯Êýf£¨x£©µÄ¡°Æ½ºâ¡°Êý¶Ô£®
£¨1£©Èôm=1£¬ÅжÏf£¨x£©=sinxÊÇ·ñΪ¡°¿Éƽºâ¡°º¯Êý£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Èôa¡ÊR£¬a¡Ù0£¬µ±a±ä»¯Ê±£¬ÇóÖ¤f£¨x£©=x2Óëg£¨x£©=a+2xµÄƽºâ¡°Êý¶Ô¡±Ïàͬ£®
£¨3£©Èôm1¡¢m2¡ÊR£¬ÇÒ£¨m1£¬$\frac{¦Ð}{2}$£©£¨m2£¬$\frac{¦Ð}{4}$£©¾ùΪº¯Êý£¬f£¨x£©=cos2x£¨0$£¼x¡Ü\frac{¦Ð}{4}$£©µÄ¡°Æ½ºâ¡±Êý¶Ô£¬Çóm12+m22µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Èôº¯Êýf£¨x£©=2sin£¨$\frac{¦Ð}{3}+\frac{¦Ð}{6}$£©£¨-$\frac{1}{2}£¼x£¼\frac{11}{2}$£©µÄͼÏóÓëxÖá½»ÓÚµãA£¬¹ýAµÄÖ±ÏßlÓ뺯Êýf£¨x£©µÄͼÏó½»ÓÚB£¬CÁ½µã£¬Ôò£¨$\overrightarrow{OB}+\overrightarrow{OC}$£©$•\overrightarrow{OA}$=£¨¡¡¡¡£©
A£®25B£®-$\frac{25}{2}$C£®$\frac{25}{2}$D£®-25

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ºÐÖй²ÓÐ9¸öÇò£¬ÆäÖÐÓÐ3¸öºìÇò¡¢4¸ö»ÆÇòºÍ2¸ö°×Çò£¬ÕâЩÇò³ýÑÕÉ«ÍâÍêÈ«Ïàͬ£®
£¨¢ñ£©´ÓºÐÖÐÒ»´ÎËæ»úÈ¡³ö2¸öÇò£¬ÇóÈ¡³öµÄ2¸öÇòÑÕÉ«ÏàͬµÄ¸ÅÂÊP£»
£¨¢ò£©´ÓºÐÖÐÒ»´ÎËæ»úÈ¡³ö4¸öÇò£¬ÉèXΪȡ³öµÄ4¸öÇòÖкìÉ«µÄ¸öÊý£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©=asin¦Øx+bcos¦Øx£¨¦Ø£¾0£©µÄÖÜÆÚΪ¦Ð£¬ÇÒ¶ÔÒ»ÇÐx¡ÊR£¬¶¼ÓÐf£¨x£©¡Üf£¨$\frac{¦Ð}{12}$£©=8£®
£¨1£©Çóº¯Êýf£¨x£©µÄ±í´ïʽ£»
£¨2£©Èôg£¨x£©=f£¨$\frac{¦Ð}{6}$-x£©£¬Çóº¯Êýg£¨x£©µÄµ¥µ÷¼õÇø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª¼«×ø±êϵÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáΪÕý°ëÖᣬÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌΪ$\frac{{x}^{2}}{3}+{y}^{2}$=1£¬Ö±ÏßlµÄÖ±½Ç×ø±ê·½³ÌΪx+y-4=0£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ$¦Ñ=\frac{1}{1-cos¦È}$£®
£¨¢ñ£©ÔÚÇúÏßC1ÉÏÇóÒ»µãP£¬Ê¹µÃµãPµ½Ö±ÏßlµÄ¾àÀë×î´ó£»
£¨¢ò£©¹ý¼«µãO×÷»¥Ïà´¹Ö±µÄÁ½ÌõÖ±Ïß·Ö±ð½»ÇúÏßC2ÓÚA£¬BºÍC£¬DËĵ㣬Çó|AB|+|CD|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Ëæ»úµØ´Ó[-1£¬1]ÖÐÈÎÈ¡Á½¸öÊýx£¬y£¬Ôòʼþ¡°y£¼sin$\frac{¦Ð}{2}$x¡±·¢ÉúµÄ¸ÅÂÊΪ$\frac{1}{¦Ð}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬ËÄÀâ×¶A-BCDEÖУ¬FΪADµÄÖе㣬DC¡ÍÆ½ÃæABC£¬CD¡ÎBE£¬AB=AC=BC=CD=2BE£®
£¨1£©ÇóÖ¤£ºEF¡ÍÆ½ÃæACD£»
£¨2£©ÇóÆ½ÃæADEÓëÆ½ÃæABDËù³ÉÈñ¶þÃæ½ÇµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=|x-a|£¬ÆäÖÐa£¾0£®
£¨1£©µ±a=1ʱ£¬Çó²»µÈʽf2£¨x£©¡Ü2µÄ½â¼¯£»
£¨2£©ÒÑÖªº¯Êýg£¨x£©=f£¨2x+a£©+2f£¨x£©µÄ×îСֵΪ4£¬ÇóʵÊýaµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸