分析 (1)当m=1时,f(x)=f(x+k)+f(x-k)成立,求出k=2nπ±$\frac{π}{3}$,n∈Z,可得结论;
(2)证明(2,0)分别是函数f(x)=x2与g(x)=a+2x的“平衡“数对,可得结论;
(3)假设存在实数m、k(k≠0),对于定义域内的任意x均有m•f(x)=f(x+k)+f(x-k)成立,则mcos2x=cos2(x+k)+cos2(x-k)=$\frac{1}{2}$[1+cos2(x+k)]+$\frac{1}{2}$[1+cos2(x-k)],得出m12+m22的函数,即可求m12+m22的取值范围.
解答 解:(1)当m=1时,f(x)=f(x+k)+f(x-k)成立,
∴sinx=sin(x+k)+sin(x-k)=sinxcosk+cosxsink+sinxcosk-cosxsink=2sinxcosk,
∴sinx(1-2cosk)=0,
∵对于定义域内的任意实数x,f(x)=f(x+k)+f(x-k)成立,
∴1-2cosk=0,
即cosk=$\frac{1}{2}$,
∴k=2nπ±$\frac{π}{3}$,n∈Z,
∴f(x)=sinx是“可平衡“函数;
(2)∵f(x)=x2的定义域为R.
假设存在实数m、k(k≠0),对于定义域内的任意x均有m•f(x)=f(x+k)+f(x-k)成立,
则mx2=(x+k)2+(x-k)2=2x2+2k2,
即(m-2)x2=2k2,
由于上式对于任意实数x都成立,
∴$\left\{\begin{array}{l}{m-2=0}\\{{k}^{2}=0}\end{array}\right.$,
解得m=2,k=0,
∴(2,0)是函数f(x)=x2的“平衡“数对,
∵g(x)=a+2x,
∴m(a+2x)=a+2x+k+a+2x-k,
∴$\left\{\begin{array}{l}{ma=2a}\\{m={2}^{k}+{2}^{-k}}\end{array}\right.$,
解得m=2,k=0,
∴(2,0)是函数g(x)=a+2x的“平衡“数对,
∴f(x)=x2与g(x)=a+2x的平衡“数对”相同
(3)假设存在实数m、k(k≠0),对于定义域内的任意x均有m•f(x)=f(x+k)+f(x-k)成立,
则mcos2x=cos2(x+k)+cos2(x-k)=$\frac{1}{2}$[1+cos2(x+k)]+$\frac{1}{2}$[1+cos2(x-k)]
∴$\frac{1}{2}$m(1+cos2x)=$\frac{1}{2}$[1+cos2(x+k)]+$\frac{1}{2}$[1+cos2(x-k)]
∴m+mcos2x=1+cos2xcos2k-sin2xsin2k+1+cos2xcos2k+sin2xsin2k,
∴m(1+cos2x)=2+2cos2xcos2k,
∵(m1,$\frac{π}{2}$)(m2,$\frac{π}{4}$)均为函数,
∴m1(1+cos2x)=2+2cos2xcosπ=2-2co2x,
m2(1+cos2x)=2+2cos2xcos$\frac{π}{2}$=2,
∵0$<x≤\frac{π}{4}$,
∴0<2x≤$\frac{π}{2}$,
∴0<cos2x≤1,
∴m1=$\frac{2-2cos2x}{1+cos2x}$=$\frac{2-2(1-2si{n}^{2}x)}{1+2co{s}^{2}x-1}$=$\frac{2si{n}^{2}x}{co{s}^{2}x}$=2tan2x,m2=$\frac{2}{1+cos2x}$=$\frac{1}{co{s}^{2}x}$
∴m12+m22=4tan4x+$\frac{1}{co{s}^{4}x}$,
设h(x)=4tan4x+$\frac{1}{co{s}^{4}x}$,(0$<x≤\frac{π}{4}$)
∴h(0)≤h(x)≤h($\frac{π}{4}$),
即1≤h(x)≤8
∴m12+m22的取范围为[1,8]
点评 本题考查新定义的理解和运用,考查函数的性质和运用,考查运算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | 2 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | n=1验证不正确 | B. | 归纳假设不正确 | ||
| C. | 从n=k到n=k+1的推理不正确 | D. | 证明过程完全正确 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com