精英家教网 > 高中数学 > 题目详情
15.已知命题p:?x0∈[0,2],log2(x0+2)<2m;命题q:关于x的方程3x2-2x+m2=0有两个相异实数根.
(1)若(¬p)∧q为真命题,求实数m的取值范围;
(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

分析 (1)若(?p)∧q为真,得到关于m的不等式组,解得实数m的取值范围;
(2)若p∨q为真命题,p∧q为假命题,则p、q一真一假,分类讨论,可得实数m的取值范围.

解答 解:令f(x)=log2(x+2),则f(x)在[0,2]上是增函数,
故当x∈[0,2]时,f(x)最小值为f(0)=1,故若p为真,则2m>1,m>$\frac{1}{2}$.…(2分)
△=4-12m2>0即m2<$\frac{1}{3}$时,方程3x2-2x+m2=0有两相异实数根,
∴-$\frac{\sqrt{3}}{3}$<m<$\frac{\sqrt{3}}{3}$;…(4分)
(1)若(?p)∧q为真,则实数m满足 $\left\{\begin{array}{l}{m≤\frac{1}{2}}\\{-\frac{\sqrt{3}}{3}<m<\frac{\sqrt{3}}{3}}\end{array}\right.$,
故-$\frac{\sqrt{3}}{3}$<m≤$\frac{1}{2}$,
即实数m的取值范围为(-$\frac{\sqrt{3}}{3}$,$\frac{1}{2}$];…(6分)
(2)若p∨q为真命题,p∧q为假命题,则p、q一真一假,
若p真q假,则实数m满足 $\left\{\begin{array}{l}{m>\frac{1}{2}}\\{m≤-\frac{\sqrt{3}}{3}或m≥\frac{\sqrt{3}}{3}}\end{array}\right.$即m≥$\frac{\sqrt{3}}{3}$;
若p假q真,则实数m满足 $\left\{\begin{array}{l}{m≤\frac{1}{2}}\\{-\frac{\sqrt{3}}{3}<m<\frac{\sqrt{3}}{3}}\end{array}\right.$,即-$\frac{\sqrt{3}}{3}$<m≤$\frac{1}{2}$.
综上所述,实数m的取值范围为(-$\frac{\sqrt{3}}{3}$,$\frac{1}{2}$]∪[$\frac{\sqrt{3}}{3}$,+∞).…(12分)

点评 本题以命题的真假判断应用为载体,考查了复合命题,函数的图象和性质,方程根的个数与系数的关系等知识点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.三国魏人刘徽,自撰《海岛算经》,专论测高望远.其中有一题:今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直.从前表却行一百二十三步,人目著地取望岛峰,与表末参合.从后表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高及去表各几何?译文如下:要测量海岛上一座山峰A的高度AH,立两根高均为3丈的标杆BC和DE,前后标杆相距1000步,使后标杆杆脚D与前标杆杆脚B与山峰脚H在同一直线上,从前标杆杆脚B退行123步到F,人眼著地观测到岛峰,A、C、F三点共线,从后标杆杆脚D退行127步到G,人眼著地观测到岛峰,A、E、G三点也共线,问岛峰的高度AH=1255 步(古制:1步=6尺,1里=180丈=1800尺=300步)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a、b都为集合{-2,0,1,3,4}中的元素,则函数f(x)=(a2-2)x+b为增函数的概率是(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在等差数列-5,-3$\frac{1}{2}$,-2,-$\frac{1}{2}$,…的相邻两项之间插入一个数,使之组成一个新的等差数列,则数列的通项公式an=-5+$\frac{3}{4}$(n-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)=ax5+bx3+cx+7(其中a,b,c为常数,x∈R),若f(-2011)=-17,则f(2011)=31.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,且满足2acosB=2c-b.
(1)求角A的大小;
(2)若c=2b,求角B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.己知函数f(x)=x3+2x2f'(1)+2,函数f(x)在点(2,f(2))的切线的倾斜角为α,则sin2(π+α)-sin($\frac{π}{2}$+α)cos($\frac{3π}{2}$-α)的值为(  )
A.$\frac{9}{17}$B.$\frac{20}{17}$C.$\frac{3}{16}$D.$\frac{21}{19}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数y=f(x),若存在实数m、k(m≠0),使得对于定义域内的任意实数x,均有m•f(x)=f(x+k)+f(x-k)成立,则称函数f(x)的“可平衡”函数,有序数对(m,k)称为函数f(x)的“平衡“数对.
(1)若m=1,判断f(x)=sinx是否为“可平衡“函数,并说明理由;
(2)若a∈R,a≠0,当a变化时,求证f(x)=x2与g(x)=a+2x的平衡“数对”相同.
(3)若m1、m2∈R,且(m1,$\frac{π}{2}$)(m2,$\frac{π}{4}$)均为函数,f(x)=cos2x(0$<x≤\frac{π}{4}$)的“平衡”数对,求m12+m22的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)=2sin($\frac{π}{3}+\frac{π}{6}$)(-$\frac{1}{2}<x<\frac{11}{2}$)的图象与x轴交于点A,过A的直线l与函数f(x)的图象交于B,C两点,则($\overrightarrow{OB}+\overrightarrow{OC}$)$•\overrightarrow{OA}$=(  )
A.25B.-$\frac{25}{2}$C.$\frac{25}{2}$D.-25

查看答案和解析>>

同步练习册答案