精英家教网 > 高中数学 > 题目详情
7.己知函数f(x)=x3+2x2f'(1)+2,函数f(x)在点(2,f(2))的切线的倾斜角为α,则sin2(π+α)-sin($\frac{π}{2}$+α)cos($\frac{3π}{2}$-α)的值为(  )
A.$\frac{9}{17}$B.$\frac{20}{17}$C.$\frac{3}{16}$D.$\frac{21}{19}$

分析 对函数f(x)求导,令x=1求出f′(1)的值,再求出f′(2)的值即为tanα,利用诱导公式化简sin2(π+α)-sin($\frac{π}{2}$+α)cos($\frac{3π}{2}$-α),弦化切求值即可.

解答 解:∵函数f(x)=x3+2x2f'(1)+2,
∴f′(x)=3x2+4xf′(1),
∴f′(1)=3+4f′(1),
解得f′(1)=-1,
∴f(x)=x3-2x2+2,
∴f′(2)=3×22-4×2=4,
函数f(x)在点(2,f(2))的切线的斜率为tanα=4,
∴sin2(π+α)-sin($\frac{π}{2}$+α)cos($\frac{3π}{2}$-α)=sin2α-cosα•(-sinα)
=$\frac{{sin}^{2}α+sinαcosα}{{sin}^{2}α{+cos}^{2}α}$
=$\frac{{tan}^{2}α+tanα}{{tan}^{2}α+1}$
=$\frac{{4}^{2}+4}{{4}^{2}+1}$
=$\frac{20}{17}$.
故选:B.

点评 本题考查了函数导数的应用问题,也考查了诱导公式以及三角函数求值问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.数列{an}的前n项和为Sn,Sn=2n+1-(n+1),等差数列{bn}的各项为正实数,其前n项和为Tn,且T3=9,又a1+b1,a2+b2,a3+b3成等比数列.
(I)求数列{an}、{bn}的通项公式;
(2)若cn=anbn,当n≥2时,求数列{cn}的前n项和An

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)求平行于直线3x+4y-12=0且与它的距离是7的直线l的方程;
(2)求经过两条直线l1:3x+4y-2=0与l2:2x+y+2=0的交点P,且垂直于直线l3:x-2y-1=0直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:?x0∈[0,2],log2(x0+2)<2m;命题q:关于x的方程3x2-2x+m2=0有两个相异实数根.
(1)若(¬p)∧q为真命题,求实数m的取值范围;
(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列说法的正确的是(  )
A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示
B.经过定点A(0,b)的直线都可以用方程y=kx+b表示
C.不经过原点的直线都可以用方程$\frac{x}{a}$+$\frac{y}{b}$=1表示P1(x1,y1)、P2(x2,y2
D.经过任意两个不同的点的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)来表示

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆$\frac{x^2}{4}+{y^2}=1$,A,B是椭圆的左,右顶点,P是椭圆上不与A,B重合的一点,PA、PB的倾斜角分别为α、β,则$\frac{cos(α-β)}{cos(α+β)}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.定义:f1(x)=f(x),当n≥2且x∈N*时,fn(x)=f(fn-1(x)),对于函数f(x)定义域内的x0,若正在正整数n是使得fn(x0)=x0成立的最小正整数,则称n是点x0的最小正周期,x0称为f(x)的n~周期点,已知定义在[0,1]上的函数f(x)的图象如图,对于函数f(x),下列说法正确的是①②③(写出所有正确命题的编号)
①1是f(x)的一个3~周期点;
②3是点$\frac{1}{2}$的最小正周期;
③对于任意正整数n,都有fn(${\frac{2}{3}}$)=$\frac{2}{3}$;
④若x0∈($\frac{1}{2}$,1],则x0是f(x)的一个2~周期点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=ex-2ax与g(x)=-x3+ax2-(2a+1)x的图象不存在相互平行或重合的切线,则实数a的取值范围[$-\sqrt{3}$,$\sqrt{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知正三棱锥P-ABC中E,F分别是AC,PC的中点,若EF⊥BF,AB=2,则三棱锥P-ABC的外接球的表面积(  )
A.B.C.D.12π

查看答案和解析>>

同步练习册答案