精英家教网 > 高中数学 > 题目详情
17.数列{an}的前n项和为Sn,Sn=2n+1-(n+1),等差数列{bn}的各项为正实数,其前n项和为Tn,且T3=9,又a1+b1,a2+b2,a3+b3成等比数列.
(I)求数列{an}、{bn}的通项公式;
(2)若cn=anbn,当n≥2时,求数列{cn}的前n项和An

分析 (I)由Sn=2n+1-(n+1),当n=1时,a1=1;当n≥2时,an=Sn-Sn-1,即可得出an.由T3=9=3b2,解得b2=5,设等差数列{bn}的公差为d,又a1+b1,a2+b2,a3+b3成等比数列,(a2+b2)=(a1+b1)(a3+b3),解得d,利用等差数列的通项公式即可得出bn
(2)cn=anbn=$\left\{\begin{array}{l}{2,n=1}\\{(2n-1)•{2}^{n}-(2n-1)(n≥2)}\end{array}\right.$.An=3+5×2+7×22+…+(2n+1)•2n-1,令S=1×21+3×22+5×23+…+(2n-1)•2n,利用“错位相减法”可得S,即可得出An

解答 解:(I)∵Sn=2n+1-(n+1),
∴当n=1时,a1=S1=22-2=2.
当n≥2时,an=Sn-Sn-1=2n-1,
∴an=$\left\{\begin{array}{l}{2(n=1)}\\{{2}^{n}-1(n≥2)}\end{array}\right.$.
∵等差数列{bn}的各项为正实数,其前n项和为Tn,且T3=9,
∴b2=3.
设数列{bn}的公差为d,(d>0).
则b1=3-d,b3=3+d.
由{an}的通项公式知,a1=2,a2=3,a3=7,
于是由a1+b1,a2+b2,a3+b3成等比数列得:(5-d)(10+d)=62
解之得d=2或d=-7(舍去),
∴bn=2n-1;
(2)cn=anbn=$\left\{\begin{array}{l}{2,n=1}\\{(2n-1)•{2}^{n}-(2n-1)(n≥2)}\end{array}\right.$.
当n≥2时,An=c1+c2+c3+…+cn
=2+3×22+5×22+7×24+…+(2n-1)•2n-[3+5+7+…+(2n-1)]
=1×21+3×22+5×23+…+(2n-1)•2n+1
令S=1×21+3×22+5×23+…+(2n-1)•2n
2S=1×22+3×23+…+(2n-3)•2n+(2n-1)•2n+1
则-S=2+2(22+23+24+…+2n)-(2n-1)•2n+1
=2+2×$\frac{{2}^{2}(1-{2}^{n-1})}{1-2}$-(2n-1)•2n+1
=(3-2n)•2n+1-6,
所以S=(2n-3)•2n+1+6,
故An=(2n-3)•2n+1-n2+7.

点评 本题考查了等差数列的通项公式及其前n项和公式、递推式的应用、“错位相减法”、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.一个直棱柱的对角线长是9cm和15cm,高是5cm,若它的底面是菱形,则这个直棱柱的侧面积是(  )
A.160 cm2B.320 cm2C.40$\sqrt{89}$cm2D.80$\sqrt{89}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若x,y满足$\left\{{\begin{array}{l}{x+3y-3≤0}\\{x≥0}\\{y≥0}\end{array}}\right.$,则z=(x-2)2+(y-3)2的取值范围是[$\frac{32}{5},13$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.三国魏人刘徽,自撰《海岛算经》,专论测高望远.其中有一题:今有望海岛,立两表齐,高三丈,前后相去千步,令后表与前表相直.从前表却行一百二十三步,人目著地取望岛峰,与表末参合.从后表却行百二十七步,人目著地取望岛峰,亦与表末参合.问岛高及去表各几何?译文如下:要测量海岛上一座山峰A的高度AH,立两根高均为3丈的标杆BC和DE,前后标杆相距1000步,使后标杆杆脚D与前标杆杆脚B与山峰脚H在同一直线上,从前标杆杆脚B退行123步到F,人眼著地观测到岛峰,A、C、F三点共线,从后标杆杆脚D退行127步到G,人眼著地观测到岛峰,A、E、G三点也共线,问岛峰的高度AH=1255 步(古制:1步=6尺,1里=180丈=1800尺=300步)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知变量x、y满足约束条件$\left\{{\begin{array}{l}{x+y≤1}\\{x-y≤1}\\{x+1≥0}\end{array}}\right.$.
(1)画出可行域(过程不要求);
(2)求可行域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.定义在实数R上的函数y=f(x)是偶函数,当x≥0时,f(x)=-4x2+8x-3.
(Ⅰ)求f(x)在R上的表达式;
(Ⅱ)在给出的坐标系中作出y=f(x)的图象,并写出f(x)最大值和f(x)在R上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.用适当的符号填空:
(1)2∈{x|x2=2x}
(2){3,4,8}⊆Z;
(3)1∈{x|x2=x}; 
(4)∅?{x|x2-1=0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知a、b都为集合{-2,0,1,3,4}中的元素,则函数f(x)=(a2-2)x+b为增函数的概率是(  )
A.$\frac{2}{5}$B.$\frac{3}{5}$C.$\frac{1}{2}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.己知函数f(x)=x3+2x2f'(1)+2,函数f(x)在点(2,f(2))的切线的倾斜角为α,则sin2(π+α)-sin($\frac{π}{2}$+α)cos($\frac{3π}{2}$-α)的值为(  )
A.$\frac{9}{17}$B.$\frac{20}{17}$C.$\frac{3}{16}$D.$\frac{21}{19}$

查看答案和解析>>

同步练习册答案