精英家教网 > 高中数学 > 题目详情
3.在等差数列-5,-3$\frac{1}{2}$,-2,-$\frac{1}{2}$,…的相邻两项之间插入一个数,使之组成一个新的等差数列,则数列的通项公式an=-5+$\frac{3}{4}$(n-1).

分析 由题意先求出原等差数列的公差,再求出新等差数列的公差,代入等差数列的通项公式求解即可.

解答 解:由题意知,在等差数列-5,-3$\frac{1}{2}$,-2,-$\frac{1}{2}$,…中,a1=-5,a4=-$\frac{1}{2}$,
所以公差d=$\frac{-\frac{1}{2}-(-5)}{2}$=$\frac{3}{2}$,
若在相邻两项间插入一个数,使之仍成等差数列,
则新等差数列的公差为$\frac{3}{4}$,
所以新数列的通项公式是an=-5+$\frac{3}{4}$(n-1).
故答案是:an=-5+$\frac{3}{4}$(n-1).

点评 本题考查等差数列的通项公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.设{an}为等比数列,{bn}为等差数列,且b1=0,cn=an+bn,若数列{cn}是1,1,2,…,则{cn}的前10项和为(  )
A.979B.557C.467D.978

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x+2)=x2-2x+3,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,P(m,-2m)(m≠0)是角α终边上的一点.则tan(α+$\frac{π}{4}$)的值为(  )
A.3B.$\frac{1}{3}$C.$-\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)求平行于直线3x+4y-12=0且与它的距离是7的直线l的方程;
(2)求经过两条直线l1:3x+4y-2=0与l2:2x+y+2=0的交点P,且垂直于直线l3:x-2y-1=0直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设f(x),g(x)是定义在同一区间[a,b]上的两个函数,若?x∈[a,b]都有|f(x)-g(x)|≤1成立,则称f(x),g(x)在[a,b]上是“亲密函数”,区间[a,b]称为“亲密区间”.若f(x)=x2+3x+2,g(x)=2x+1在[a,b]上是“亲密函数”,则其“亲密区间”是(  )
A.[0,2]B.[0,1]C.[1,2]D.[-1,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知命题p:?x0∈[0,2],log2(x0+2)<2m;命题q:关于x的方程3x2-2x+m2=0有两个相异实数根.
(1)若(¬p)∧q为真命题,求实数m的取值范围;
(2)若p∨q为真命题,p∧q为假命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知椭圆$\frac{x^2}{4}+{y^2}=1$,A,B是椭圆的左,右顶点,P是椭圆上不与A,B重合的一点,PA、PB的倾斜角分别为α、β,则$\frac{cos(α-β)}{cos(α+β)}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.将1到n的n个正整数按下面的方法排成一个排列,要求:除左边的第一个数外,每个数都与它左边(未必相邻)的某个数相差1,将此种排列称为“n排列”.比如“2排列”为n=2时,有1,2;和2,1;共2种排列.“3排列”为当n=3时,有1,2,3;2,1,3;2,3,1;3,2,1;共4种排列.
(1)请写出“4排列”的排列数;
(2)问所有“n排列”的结尾数只能是什么数?请加以证明;
(3)证明:“n排列”共有2n-1个.

查看答案和解析>>

同步练习册答案