分析 (1)利用三角形中位线的性质,可得EF∥PA,利用PA⊥平面ABCD,可得EF⊥平面ABCD,即可证明平面BEF⊥平面ABCD;
(2)利用三棱锥C-BEF的体积等于三棱锥F-BEC的体积,即可求得三棱锥C-BEF的体积.
解答 (1)证明:λ=$\frac{1}{2}$,则F为线段PD的中点,又E是线段AD的中点,
∴EF∥PA,
∵PA⊥平面ABCD,
∴EF⊥平面ABCD,
∵EF?平面BEF,
∴平面BEF⊥平面ABCD;
(2)解:当λ=$\frac{1}{3}$时,∵PA=6,∴F到平面ABCD的距离d=4.
∵∠ABC+∠ADC=90°,∴∠ABC=∠ADC=45°,
在△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°,
∴∠BAC=90°,
∴S△BEC=S△ABC=$\frac{1}{2}$×6×6=18.
∴三棱锥C-BEF的体积=三棱锥F-BEC的体积V=$\frac{1}{3}$×18×4=24.
点评 本题考查线面垂直、平面与平面垂直的证明,考查三棱锥体积的计算,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{\sqrt{3}}{3}$ | C. | $\frac{\sqrt{2}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 6 | C. | 3 | D. | -8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 利用时间充分 | 利用时间不充分 | 合计 | |
| 走读生 | 30 | ||
| 住校生 | 10 | ||
| 合计 |
| p(K2≥k) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.83 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | e | D. | $\frac{1}{e}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com