精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中

时,求曲线在点处的切线方程;

时,若在区间上的最小值为,求a的取值范围;

,且恒成立,求a的取值范围.

【答案】(I);(II);(III).

【解析】

求出,的值可得切点坐标,求出的值,可得切线斜率,利用点斜式可得曲线在点处的切线方程;确定函数的定义域,求导函数,分类讨论,利用导数确定函数的单调性,利用单调性求得函数在区间上的最小值为,即可求的取值范围;,则,对任意,且恒成立,等价于上单调递增,由此可求的取值范围.

时,

因为,所以切线方程为

函数的定义域为

时,

,即,所以

,即时,上单调递增,

所以上的最小值是

时,上的最小值是,不合题意;

时,上单调递减,

所以上的最小值是,不合题意

综上可得

,则,对任意,且恒成立,等价于上单调递增.

时,,此时单调递增;

时,只需恒成立,因为,只要,则需要

对于函数,过定点,对称轴,只需,即

综上可得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆C:mx2+3my2=1(m>0)的长轴长为 ,O为坐标原点.
(1)求椭圆C的方程和离心率.
(2)设点A(3,0),动点B在y轴上,动点P在椭圆C上,且点P在y轴的右侧.若BA=BP,求四边形OPAB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的对称轴为坐标轴,顶点是坐标原点,准线方程为x=﹣1,直线l与抛物线相交于不同的A,B两点.
(1)求抛物线的标准方程;
(2)如果直线l过抛物线的焦点,求 的值;
(3)如果 ,直线l是否过一定点,若过一定点,求出该定点;若不过一定点,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若是函数的唯一极值点,则实数的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,且过点 .若点M(x0 , y0)在椭圆C上,则点 称为点M的一个“椭点”.
(1)求椭圆C的标准方程;
(2)若直线l:y=kx+m与椭圆C相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以PQ为直径的圆经过坐标原点,试求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知P是直线上的一个动点,圆Q的方程为:设以线段PQ为直径的圆E与圆Q交于CD两点.

证明:PCPD均与圆Q相切;

时,求点P的坐标;

求线段CD长度的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公比不等于1的等比数列{an},满足:a3=3,S3=9,其中Sn为数列{an}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log2 , 若cn= , 求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边长分别为a,b,c,且cos =
(1)若a=3,b= ,求c的值;
(2)若f(A)=sin cos ﹣sin )+ ,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C的方程为x2+y2-4x=0.若直线y=k(x+1)上存在一点P,使过P所作的圆的两条切线相互垂直,则实数k的取值范围是(  )

A. (-∞,-2) B. [-2,2]

C. [-] D. (-∞,-2]∪[2,+∞)

查看答案和解析>>

同步练习册答案