精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,圆C的方程为x2+y2-4x=0.若直线y=k(x+1)上存在一点P,使过P所作的圆的两条切线相互垂直,则实数k的取值范围是(  )

A. (-∞,-2) B. [-2,2]

C. [-] D. (-∞,-2]∪[2,+∞)

【答案】B

【解析】

设两个切点分别为AB,则由题意可得四边形PACB为正方形,故有|PC|=R=2, 圆心到直线yk(x+1)的距离d≤|PC|=2,从而解得参数范围.

C的方程为x2y2-4x=0,故圆心为C(2,0),半径R=2.

设两个切点分别为AB,则由题意可得四边形PACB为正方形,故有|PC|=R=2

圆心到直线yk(x+1)的距离d≤|PC|=2

d≤2

解得k2≤8,可得-2k≤2

故选B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中

时,求曲线在点处的切线方程;

时,若在区间上的最小值为,求a的取值范围;

,且恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过抛物线y2=6x的焦点F,且与抛物线相交于AB两点.

(1)若直线l的倾斜角为60°,求|AB|的值;

(2)|AB|=9,求线段AB的中点M到准线的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣alnx(a∈R).
(1)若曲线f(x)在(1,f(1))处的切线与直线y=﹣x+5垂直,求实数a的值.
(2)x0∈[1,e],使得 ≤0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2px(p>0)上点T(3,t)到焦点F的距离为4.

(1)求t,p的值;
(2)设A,B是抛物线上分别位于x轴两侧的两个动点,且 (其中O为坐标原点).求证:直线AB过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求经过直线l1:x+3y-3=0,l2:x-y+1=0的交点且平行于直线2x+y-3=0的直线方程.

(2)求证:不论m取什么实数,直线(2m-1)x+(m+3)y-(m-11)=0都经过一个定点,并求出这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义行列式运算 =a1b2﹣a2b1 , 将函数f(x)= 的图象向左平移t(t>0)个单位,所得图象对应的函数为偶函数,则t的最小值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足:f′(x)﹣f(x)=xex , 且f(0)= ,则 的最大值为(
A.0
B.
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2+(a+1)x+2ln(x﹣1).
(1)若曲线y=f(x)在点(2,f(2))处的切线与直线2x﹣y+1=0平行,求出这条切线的方程;
(2)讨论函数f(x)的单调区间;
(3)若对于任意的x∈(1,+∞),都有f(x)<﹣2,求实数a的取值范围.

查看答案和解析>>

同步练习册答案