精英家教网 > 高中数学 > 题目详情

【题目】某老师是省级课题组的成员,主要研究课堂教学目标达成度,为方便研究,从实验班中随机抽取30次的随堂测试成绩进行数据分析已知学生甲的30次随堂测试成绩如下满分为100

把学生甲的成绩按分成6组,列出频率分布表,并画出频率分布直方图;

规定随堂测试成绩80分以上80为优秀,为帮助学生甲提高成绩,选取学生乙,对甲与乙的随堂测试成绩进行对比分析,甲与乙测试成绩是否为优秀相互独立已知甲成绩优秀的概率为以频率估计概率,乙成绩优秀的概率为,若,则此二人适合为学习上互帮互助的“对子”在一次随堂测试中,记为两人中获得优秀的人数,已知,问二人是否适合结为“对子”?

【答案】(1)直方图见解析;(2)是.

【解析】

根据题意列出频率分布表,画出频率分布直方图即可;

由题意知随机变量X的所有可能取值,计算对应的概率值,写出分布列,再计算数学期望值,求出以及的值,由此得出结论.

根据成绩分组,列出频率分布表如下,

分组

频数累计

频数

频率

频率组距

3

3

9

6

6

3

合计

30

1

画出频率分布直方图如图所示;

,随机变量X的所有可能取值分别为012

时,

时,

时,

所以X的分布列为;

X

0

1

2

P

所以X的数学期望为

解得

所以

所以学生甲与学生乙适合结为“对子”.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)求曲线的直角坐标方程,并说明它为何种曲线;

(Ⅱ)设点的坐标为,直线交曲线两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图甲所示, 是梯形的高, ,现将梯形沿折起如图乙所示的四棱锥,使得,点是线段上一动点.

(1)证明: 不可能垂直;

(2)当时,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设椭圆 ,长轴的右端点与抛物线 的焦点重合,且椭圆的离心率是

(Ⅰ)求椭圆的标准方程;

(Ⅱ)过作直线交抛物线 两点,过且与直线垂直的直线交椭圆于另一点,求面积的最小值,以及取到最小值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知过点的椭圆的离心率为,左顶点和上顶点分别为AB

1)求椭圆的标准方程;

2)若P为线段OD延长线上一点,直线PA交椭圆于另一点E,直线PB交椭圆于另一点Q

①求直线PAPB的斜率之积;

②判断直线ABEQ是否平行?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数的图像向左平移个单位后得到函数的图像,且函数满足,则下列命题中正确的是()

A. 函数图像的两条相邻对称轴之间的距离为

B. 函数图像关于点对称

C. 函数图像关于直线对称

D. 函数在区间内为单调递减函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我们知道,地球上的水资源有限,爱护地球、节约用水是我们每个人的义务和责任.某市政府为了对自来水的使用进行科学管理,节约水资源,计划确定一个家庭年用水量的标准,为此,对全市家庭日常用水的情况进行抽样调查,并获得了个家庭某年的用水量(单位:立方米),统计结果如下表所示.

(Ⅰ)分别求出的值;

(Ⅱ)若以各组区间中点值代表该组的取值,试估计全市家庭平均用水量;

(Ⅲ)从样本中年用水量在(单位:立方米)的个家庭中任选个,作进一步跟踪研究,求年用水量最多的家庭被选中的概率(个家庭的年用水量都不相等).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动圆M与圆F1x2+y2+6x+50外切,同时与圆F2x2+y26x910内切.

1)求动圆圆心M的轨迹方程E,并说明它是什么曲线;

2)若直线yx+m与(1)中的轨迹E有两个不同的交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知椭圆1ab0)的右顶点为(20),离心率为P是直线x4上任一点,过点M10)且与PM垂直的直线交椭圆于AB两点.

1)求椭圆的方程;

2)若P点的坐标为(43),求弦AB的长度;

3)设直线PAPMPB的斜率分别为k1k2k3,问:是否存在常数λ,使得k1+k3λk2?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案