椭圆![]()
的离心率为
,其左焦点到点
的距离为
.
(1) 求椭圆
的标准方程;
(2) 若直线
与椭圆
相交于
两点(
不是左右顶点),且以
为直径的圆过椭圆
的右顶点,求证:直线
过定点,并求出该定点的坐标.![]()
(1)
;(2)证明详见解析,
.
解析试题分析:本题主要考查椭圆的标准方程及其几何性质、直线与椭圆相交问题等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,利用椭圆的离心率和左焦点到点P的距离列出方程组,解出基本量a,b,c,从而得到椭圆的标准方程;第二问,用直线与椭圆联立,消参得到关于x的方程,利用韦达定理得到
和
,由于AB为直径的圆过椭圆右顶点 A2(2,0) ,所以
,利用向量的数量积的运算公式,将前面的式子都代入,得到
或 m = -2k,经验证都符合题意,则分别求出定点坐标,再验证,最终得到结论.
试题解析:(1)由题:
①
左焦点 (-c,0) 到点 P(2,1) 的距离为:
② 2分
由①②可解得c =" 1" , a =" 2" , b 2 = a 2-c 2 = 3. 3分
∴所求椭圆 C 的方程为
. 4分
(2)设 A(x1,y1)、B(x2,y2),将 y =" kx" + m代入椭圆方程得
(4k 2 + 3) x 2 + 8kmx + 4m 2-12 = 0.
∴
,
, 6分
且y1 = kx1 + m,y2 = kx2 + m.
∵AB为直径的圆过椭圆右顶点 A2(2,0) ,所以
. 7分
所以 (x1-2,y1)·(x2-2,y2) = (x1-2) (x2-2) + y1y2 = (x1-2) (x2-2) + (kx1 + m) (kx2 + m)
= (k 2 + 1) x1x2 + (km-2) (x1 + x2) + m 2 + 4
= (k 2 + 1)·
-(km-2)·
+ m 2 + 4 =" 0" . 10分
整理得 7m 2 + 16km + 4k 2 = 0.∴
或 m = -2k 都满足 △ > 0. 12分
若 m = -2k 时,直线 l 为 y = kx-2k =" k" (x-2) ,恒过定点 A2(2,0),不合题意舍去; 13分
若
时,直线 l 为
, 恒过定点
. 14分![]()
考点:椭圆的标准方程及其几何性质、直线与椭圆相交问题.
科目:高中数学 来源: 题型:解答题
设椭圆C:
(a>b>0)的离心率为
,过原点O斜率为1的直线与椭圆C相交于M,N两点,椭圆右焦点F到直线l的距离为
.
(1)求椭圆C的方程;
(2)设P是椭圆上异于M,N外的一点,当直线PM,PN的斜率存在且不为零时,记直线PM的斜率为k1,直线PN的斜率为k2,试探究k1·k2是否为定值?若是,求出定值;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系xOy中,已知椭圆C1:
=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设椭圆C:
的离心率
,右焦点到直线
1的距离
,O为坐标原点.
(1)求椭圆C的方程;
(2)过点O作两条互相垂直的射线,与椭圆C分别交于A、B两点,证明点O到直线AB的距离为定值,并求弦AB长度的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知抛物线C:
的焦点为F,
ABQ的三个顶点都在抛物线C上,点M为AB的中点,
.(1)若M
,求抛物线C方程;(2)若
的常数,试求线段
长的最大值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,矩形ABCD中,|AB|=4,|BC|=2,E,F,M,N分别是矩形四条边的中点,G,H分别是线段ON,CN的中点.
(1)证明:直线EG与FH的交点L在椭圆W:
上;
(2)设直线l:
与椭圆W:
有两个不同的交点P,Q,直线l与矩形ABCD有两个不同的交点S,T,求
的最大值及取得最大值时m的值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆
:
的短轴长为
,且斜率为
的直线
过椭圆
的焦点及点
.
(1)求椭圆
的方程;
(2)已知直线
过椭圆
的左焦点
,交椭圆于点P、Q.
(ⅰ)若满足
(
为坐标原点),求
的面积;
(ⅱ)若直线
与两坐标轴都不垂直,点
在
轴上,且使
为
的一条角平分线,则称点
为椭圆
的“特征点”,求椭圆
的特征点.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知曲线
上的点到点
的距离比它到直线
的距离小2.
(1)求曲线
的方程;
(2)曲线
在点
处的切线
与
轴交于点
.直线
分别与直线
及
轴交于点
,以
为直径作圆
,过点
作圆
的切线,切点为
,试探究:当点
在曲线
上运动(点
与原点不重合)时,线段
的长度是否发生变化?证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com