如图,矩形ABCD中,|AB|=4,|BC|=2,E,F,M,N分别是矩形四条边的中点,G,H分别是线段ON,CN的中点.
(1)证明:直线EG与FH的交点L在椭圆W:
上;
(2)设直线l:
与椭圆W:
有两个不同的交点P,Q,直线l与矩形ABCD有两个不同的交点S,T,求
的最大值及取得最大值时m的值.![]()
(1)证明见解析;(2)
时,
取最大值
.
解析试题分析:解题思路:(1)由点写出直线方程,联立直线方程得到交点坐标,,验证点满足椭圆方程;(2)联立直线与椭圆的方程,常用“设而不求”的方法,求弦长,进而求所求比值,常用换元法求最值.规律总结:直线与圆锥曲线的位置关系问题,一般综合性强.一般思路是联立直线与圆锥曲线的方程,整理得关于
的一元二次方程,常用“设而不求”的方法进行求解.
试题解析:(1)点
,
,
,
,
则直线EG:
,直线FH:
,
则直线EG与FH的交点
,
因为
,故直线EG与FH的交点L在椭圆W:
上.
(2)联立方程组
消去y,得
,
设
,
,则
,
,
由
,且
得
.
,由于
时,直线l与矩形ABCD的边AB、CD相交,
所以
,则
,
所以
时,
取最大值
.
考点:直线与椭圆的位置关系.
科目:高中数学 来源: 题型:解答题
定义:我们把椭圆的焦距与长轴的长度之比即
,叫做椭圆的离心率.若两个椭圆的离心率
相同,称这两个椭圆相似.
(1)判断椭圆
与椭圆
是否相似?并说明理由;
(2)若椭圆![]()
与椭圆
相似,求
的值;
(3)设动直线
与(2)中的椭圆
交于
两点,试探究:在椭圆
上是否存在异于
的定点
,使得直线
的斜率之积为定值?若存在,求出定点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆![]()
的离心率为
,其左焦点到点
的距离为
.
(1) 求椭圆
的标准方程;
(2) 若直线
与椭圆
相交于
两点(
不是左右顶点),且以
为直径的圆过椭圆
的右顶点,求证:直线
过定点,并求出该定点的坐标.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
=1(a>0,b>0)的离心率与双曲线
=1的一条渐近线的斜率相等以原点为圆心,椭圆的短半轴长为半径的圆与直线sin
·x+cos
·y-l=0相切(
为常数).
(1)求椭圆C的方程;
(2)若过点M(3,0)的直线与椭圆C相交TA,B两点,设P为椭圆上一点,且满足
(O为坐标原点),当
时,求实数t取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系
中,已知抛物线
:
,在此抛物线上一点![]()
到焦点的距离是3.
(1)求此抛物线的方程;
(2)抛物线
的准线与
轴交于
点,过
点斜率为
的直线
与抛物线
交于
、
两点.是否存在这样的
,使得抛物线
上总存在点
满足
,若存在,求
的取值范围;若不存在,说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.
(1)求椭圆C的方程;
(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆C的中心在原点,焦点在x轴上,两焦点F1,F2之间的距离为2
,椭圆上第一象限内的点P满足PF1⊥PF2,且△PF1F2的面积为1.
(1)求椭圆C的标准方程;
(2)若椭圆C的右顶点为A,直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,且满足AM⊥AN.求证:直线l过定点,并求出定点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com