精英家教网 > 高中数学 > 题目详情

在平面直角坐标系中,已知抛物线,在此抛物线上一点到焦点的距离是3.
(1)求此抛物线的方程;
(2)抛物线的准线与轴交于点,过点斜率为的直线与抛物线交于两点.是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,说明理由.

(1);(2)存在这样的,且的取值范围为.

解析试题分析:(1)由抛物线准线方程可得,从而得出抛物线的方程;
(2)设,联立直线与抛物线的方程整理得一元二次方程,由判别式得出的取值范围,并根据韦达定理得.然后由,进而得到,根据判别式确定的取值范围即可.  
试题解析:(1)抛物线准线方程是,    
               
故抛物线的方程是.                            
(2)设
, 
.
                                 
,同理

即:,                              
,                                      
,得
得,
的取值范围为           
考点:抛物线的定义;抛物线与直线的综合应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,已知椭圆C1=1(a>b>0)的左焦点为F1(-1,0),且点P(0,1)在C1上.
(1)求椭圆C1的方程;
(2)设直线l同时与椭圆C1和抛物线C2:y2=4x相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知抛物线C: 的焦点为F,ABQ的三个顶点都在抛物线C上,点M为AB的中点,.(1)若M,求抛物线C方程;(2)若的常数,试求线段长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,矩形ABCD中,|AB|=4,|BC|=2,E,F,M,N分别是矩形四条边的中点,G,H分别是线段ON,CN的中点.
(1)证明:直线EG与FH的交点L在椭圆W:上;
(2)设直线l:与椭圆W:有两个不同的交点P,Q,直线l与矩形ABCD有两个不同的交点S,T,求的最大值及取得最大值时m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的左,右两个顶点分别为.曲线是以两点为顶点,离心率为的双曲线.设点在第一象限且在曲线上,直线与椭圆相交于另一点
(1)求曲线的方程;
(2)设两点的横坐标分别为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的短轴长为,且斜率为的直线过椭圆的焦点及点
(1)求椭圆的方程;
(2)已知直线过椭圆的左焦点,交椭圆于点P、Q.
(ⅰ)若满足为坐标原点),求的面积;
(ⅱ)若直线与两坐标轴都不垂直,点轴上,且使的一条角平分线,则称点为椭圆的“特征点”,求椭圆的特征点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设A,B分别为椭圆=1(a>b>0)的左、右顶点,(1,)为椭圆上一点,椭圆长半轴长等于焦距.
(1)求椭圆的方程;
(2)设P(4,x)(x≠0),若直线AP,BP分别与椭圆相交于异于A,B的点M,N,求证:∠MBN为钝角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为坐标原点,椭圆的左右焦点分别为,离心率为;双曲线的左右焦点分别为,离心率为,已知,且.
(1)求的方程;
(2)过点作的不垂直于轴的弦,的中点,当直线交于两点时,求四边形面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知,为双曲线左,右焦点,以双曲线右支上任意一点P为圆心,以为半径的圆与以为圆心,为半径的圆内切,则双曲线两条渐近线的夹角是

查看答案和解析>>

同步练习册答案