已知椭圆:的短轴长为,且斜率为的直线过椭圆的焦点及点.
(1)求椭圆的方程;
(2)已知直线过椭圆的左焦点,交椭圆于点P、Q.
(ⅰ)若满足(为坐标原点),求的面积;
(ⅱ)若直线与两坐标轴都不垂直,点在轴上,且使为的一条角平分线,则称点为椭圆的“特征点”,求椭圆的特征点.
(1);(2)(ⅰ)2,(ⅱ)
解析试题分析:(1)由短轴长得,由焦点和点可算出斜率为,可以得到焦点坐标,所以可以得椭圆的方程。(2)(ⅰ)由向量的数量积公式及三角形面积公式可得出结果。(ⅱ)设直线的方程,但是不需要求的方程,通过与椭圆联立方程组进行求解。
试题解析:(1)由题意可知,直线的方程为, 1分
∵直线过椭圆的焦点,∴该焦点坐标为∴ 2分
又椭圆的短轴长为,∴,∴ 3分
∴椭圆的方程为 4分
(2)(ⅰ)∵
∴ 6分
∴ 8分
(ⅱ)设特征点,左焦点为,可设直线PQ的方程为,
由消去得
设,则
10分
∵为的一条角平分线,
∴,即 12分
又,,代入上式可得
∴,解得
∴椭圆C的特征点为. 14分
考点:圆锥曲线与其他知识的综合
科目:高中数学 来源: 题型:解答题
椭圆的离心率为,其左焦点到点的距离为.
(1) 求椭圆的标准方程;
(2) 若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,已知抛物线:,在此抛物线上一点到焦点的距离是3.
(1)求此抛物线的方程;
(2)抛物线的准线与轴交于点,过点斜率为的直线与抛物线交于、两点.是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.
(1)求椭圆C的方程;
(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
椭圆C的中心在原点,焦点在x轴上,两焦点F1,F2之间的距离为2,椭圆上第一象限内的点P满足PF1⊥PF2,且△PF1F2的面积为1.
(1)求椭圆C的标准方程;
(2)若椭圆C的右顶点为A,直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,且满足AM⊥AN.求证:直线l过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆的离心率为,为椭圆在轴正半轴上的焦点,、两点在椭圆上,且,定点.
(1)求证:当时;
(2)若当时有,求椭圆的方程;
(3)在(2)的椭圆中,当、两点在椭圆上运动时,试判断 是否有最大值,若存在,求出最大值,并求出这时、两点所在直线方程,若不存在,给出理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com