精英家教网 > 高中数学 > 题目详情

已知椭圆的短轴长为,且斜率为的直线过椭圆的焦点及点
(1)求椭圆的方程;
(2)已知直线过椭圆的左焦点,交椭圆于点P、Q.
(ⅰ)若满足为坐标原点),求的面积;
(ⅱ)若直线与两坐标轴都不垂直,点轴上,且使的一条角平分线,则称点为椭圆的“特征点”,求椭圆的特征点.

(1);(2)(ⅰ)2,(ⅱ)

解析试题分析:(1)由短轴长,由焦点和点可算出斜率为,可以得到焦点坐标,所以可以得椭圆的方程。(2)(ⅰ)由向量的数量积公式及三角形面积公式可得出结果。(ⅱ)设直线的方程,但是不需要求的方程,通过与椭圆联立方程组进行求解。
试题解析:(1)由题意可知,直线的方程为,         1分
∵直线过椭圆的焦点,∴该焦点坐标为    2分
又椭圆的短轴长为,∴,∴   3分
∴椭圆的方程为   4分
(2)(ⅰ)∵
   6分
    8分
(ⅱ)设特征点,左焦点为,可设直线PQ的方程为
消去
,则
     10分
的一条角平分线,
,即          12分
,代入上式可得

,解得
∴椭圆C的特征点为.                     14分
考点:圆锥曲线与其他知识的综合

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

椭圆的离心率为,其左焦点到点的距离为
(1) 求椭圆的标准方程;
(2) 若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知抛物线,在此抛物线上一点到焦点的距离是3.
(1)求此抛物线的方程;
(2)抛物线的准线与轴交于点,过点斜率为的直线与抛物线交于两点.是否存在这样的,使得抛物线上总存在点满足,若存在,求的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.
(1)求椭圆C的方程;
(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,设椭圆的左右焦点为,上顶点为,点关于对称,且
(1)求椭圆的离心率;
(2)已知是过三点的圆上的点,若的面积为,求点到直线距离的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

椭圆C的中心在原点,焦点在x轴上,两焦点F1,F2之间的距离为2,椭圆上第一象限内的点P满足PF1⊥PF2,且△PF1F2的面积为1.
(1)求椭圆C的标准方程;
(2)若椭圆C的右顶点为A,直线l:y=kx+m(k≠0)与椭圆C交于不同的两点M,N,且满足AM⊥AN.求证:直线l过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆过点,且离心率为.斜率为的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.
(1)求椭圆的方程;
(2)求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的离心率为为椭圆在轴正半轴上的焦点,两点在椭圆上,且,定点.
(1)求证:当
(2)若当时有,求椭圆的方程;
(3)在(2)的椭圆中,当两点在椭圆上运动时,试判断 是否有最大值,若存在,求出最大值,并求出这时两点所在直线方程,若不存在,给出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

椭圆的离心率为,若直线与其一个交点的横坐标为,则的值为                

查看答案和解析>>

同步练习册答案