【题目】在四棱锥
中,底面
为矩形,
平面
为
的中点
(1)证明:
平面
;
(2)证明:
平面
;
(3)若
三棱锥
的体积为
,求点D到平面
的距离.
科目:高中数学 来源: 题型:
【题目】某商场举行促销活动,有两个摸奖箱,
箱内有一个“
”号球,两个“
”号球,三个“
”号球、四个无号球,
箱内有五个“
”号球,五个“
”号球,每次摸奖后放回,每位顾客消费额满
元有一次
箱内摸奖机会,消费额满
元有一次
箱内摸奖机会,摸得有数字的球则中奖,“
”号球奖
元,“
”号球奖
元,“
”号球奖
元,摸得无号球则没有奖金。
(1)经统计,顾客消费额
服从正态分布
,某天有
位顾客,请估计消费额
(单位:元)在区间
内并中奖的人数.(结果四舍五入取整数)
附:若
,则
,
.
(2)某三位顾客各有一次
箱内摸奖机会,求其中中奖人数
的分布列.
(3)某顾客消费额为
元,有两种摸奖方法,
方法一:三次
箱内摸奖机会;
方法二:一次
箱内摸奖机会.
请问:这位顾客选哪一种方法所得奖金的期望值较大.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3+bx2+cx-1,当x=-2时有极值,且在x=-1处的切线的斜率为-3.
(1)求函数f(x)的解析式.
(2)求函数f(x)在区间[-1,2]上的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】立德中学和树人中学各派一名学生组成一个联队参加一项智力竞赛,这个智力竞赛一共两轮,在每一轮中,两名同学各回答一次题目,已知,立德中学派出的学生每轮中答对问题的概率都是
,树人中学派出的学生每轮中答对问题的概率都是
;每轮中,两位同学答对与否互不影响,各论结果亦互不影响,求:
(Ⅰ)两轮比赛后,立德中学的学生恰比树人中学的学生答对题目的个数多
个的概率;
(Ⅱ)两轮比赛后,记
为这两名同学一共答对的题目数,求随机变量
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左顶点为
,上顶点为
,右焦点为
,离心率为
,
的面积为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)若
为
轴上的两个动点,且
,直线
和
分别与椭圆
交于
两点.
(ⅰ)求
的面积最小值;
(ⅱ)证明:
三点共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形
与
均为菱形,
,且
.
![]()
(Ⅰ)求证:
平面
;
(Ⅱ)求二面角
的余弦值;
(Ⅲ)若
为线段
上的一点,且满足直线
与平面
所成角的正弦值为
,求线段
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的几何体中,
垂直于梯形
所在的平面,
为
的中点,
,四边形
为矩形,线段
交
于点
.
![]()
(1)求证:
平面
;
(2)求二面角
的正弦值;
(3)在线段
上是否存在一点
,使得
与平面
所成角的大小为
?若存在,求出
的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
的右焦点为
,点
分别是椭圆
的上、下顶点,点
是直线
上的一个动点(与
轴的交点除外),直线
交椭圆于另一个点
.
![]()
(1)当直线
经过椭圆的右焦点
时,求
的面积;
(2)①记直线
的斜率分别为
,求证:
为定值;
②求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com