精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(Ⅰ)当时,求函数的图象在点(1, )处的切线方程;

(Ⅱ)讨论函数的单调区间;

(Ⅲ)已知,对于函数图象上任意不同的两点,其中,直线的斜率为,记,若求证

【答案】(Ⅰ) ;(Ⅱ)答案见解析;(Ⅲ)证明见解析.

【解析】试题分析】)由题设条件先求出函数导数,再借助导数的几何意义求出切线的斜率;()先求函数的导数再依据实数的取值范围进行分类求出其单调区间;)分别求出k= 将问题转化为证明,然后设再构造函数,最后借助导数知识推断函数内单调递减,进而推得从而证得

解析:(Ⅰ)当时,

函数的图象在点(1, )处的切线方程为: ,

(Ⅱ) 的定义域为

时, 上恒成立, 在定义域内单调递增;

时,令解得,

时, 单调递增;

时, 单调递减;

综上, 时, 的单调递增区间为

时, 的单调递增区间为

的单调递增区间为

(Ⅲ)证明:

要证: ,只需证

即证: ,设

对称轴.

,故内单调递减,则

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国传统文化中很多内容体现了数学的对称美,如图所示的太极图是由黑白两个鱼形纹组成的圆形图案,充分展现了相互转化、对称统一的形式美、和谐美,给出定义:能够将圆的周长和面积同时平分的函数称为这个圆的优美函数,给出下列命题:

①对于任意一个圆,其优美函数有无数个

函数可以是某个圆的优美函数

正弦函数可以同时是无数个圆的优美函数

函数优美函数的充要条件为函数的图象是中心对称图形.

其中正确的命题是:( )

A. ①③ B. ①③④ C. ②③ D. ①④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举行了以“重温时代经典,唱响回声嘹亮”为主题的“红歌”歌咏比赛. 该校高一年级有1,2,3,4四个班参加了比赛,其中有两个班获奖. 比赛结果揭晓之前,甲同学说:“两个获奖班级在2班、3班、4班中”,同学说2班没有获奖,3班获奖了”,同学说1班、4班中有且只有一个班获奖”,丁同学说:“乙说得对”. 已知这四人中有且只有两人的说法是正确的,则这两人是

A. 乙,丁 B. 甲,丙 C. 甲,丁 D. 乙,丙

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中,各棱长均相等, 分别为棱 的中点.

(Ⅰ)证明: 平面

(Ⅱ)若三棱柱为直棱柱,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为函数图象上一点, 为坐标原点,记直线的斜率

1)若函数在区间上存在极值,求实数的取值范围;

2)当时,不等式恒成立,求实数的取值范围;

3)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当前网购已成为现代大学生的时尚。某大学学生宿舍4人参加网购约定:每个人通过掷一枚质地均匀的骰子决定自己去哪家购物掷出点数为5或6的人去淘宝网购物掷出点数小于5的人去京东商城购物且参加者必须从淘宝网和京东商城选择一家购物

1求这4个人中恰有1人去淘宝网购物的概率;

2分别表示这4个人中去淘宝网和京东商城购物的人数求随机变量的分布列与数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点为曲线上任意一点,且到定点的距离比到轴的距离多1

1)求曲线的方程;

2)点为曲线上一点,过点分别作倾斜角互补的直线 与曲线分别交于 两点,过点且与垂直的直线与曲线交于 两点,若,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法:

①频率是反映事件发生的频繁程度,概率反映事件发生的可能性大小;

②做n次随机试验,事件A发生m,则事件A发生的频率就是事件A的概率;

③百分率是频率,但不是概率;

④频率是不能脱离n次试验的试验值,而概率是具有确定性的不依赖于试验次数的理论值;

⑤频率是概率的近似值,概率是频率的稳定值.

其中正确的是____(填序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数 .

(Ⅰ)判断函数零点的个数,并说明理由;

(Ⅱ)记,讨论的单调性;

(Ⅲ)若恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案