精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,点为曲线上任意一点,且到定点的距离比到轴的距离多1

1)求曲线的方程;

2)点为曲线上一点,过点分别作倾斜角互补的直线 与曲线分别交于 两点,过点且与垂直的直线与曲线交于 两点,若,求点的坐标.

【答案】(1;(2.

【解析】试题分析:(1)利用到定点的距离和到定直线的距离的关系,列出方程即为曲线方程;(2)先考虑特殊情况,当的横坐标小于零时,求得其纵坐标为不合题意.当的横坐标不小于零时,曲线的方程可化为,分别设出的坐标,求出斜率利用两个斜率相等,可求得直线的方程,利用抛物线的弦长公式可求得的纵坐标.

试题解析:(1)设,则,此即为的方程,

(2)当的横坐标小于零时, ,即,不合题意,

的横坐标不小于零时, ,设 .

直线的倾斜角互补, ,化简得

.

故直线的方程为,即,代入得,

,即,解得

故点的坐标为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】第35届牡丹花会期间,我班有5名学生参加志愿者服务,服务场所是王城公园和牡丹公园.

(1)若学生甲和乙必须在同一个公园,且甲和丙不能在同一个公园,则共有多少种不同的分配方案?

(2)每名学生都被随机分配到其中的一个公园,设分别表示5名学生分配到王城公园和牡丹公园的人数,记,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点的直线相交于两点,点关于轴的对称点为.

(Ⅰ)证明:点在直线上;

(Ⅱ)设,求的内切圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求函数的图象在点(1, )处的切线方程;

(Ⅱ)讨论函数的单调区间;

(Ⅲ)已知,对于函数图象上任意不同的两点,其中,直线的斜率为,记,若求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上是增函数,且

1)求a的取值范围;

2)求函数上的最大值.

3)已知,证明

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某地区老人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:

性别
是否需要志愿者



需要

40

30

不需要

160

270

1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

2)请根据上面的数据分析该地区的老年人需要志愿者提供帮助与性别有关吗

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下图是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书迷”,低于60分钟的学生称为“非读书迷”.

(Ⅰ) 求的值并估计全校3000名学生中“读书迷”大概有多少?(将频率视为概率)

(Ⅱ)根据已知条件完成下面的列联表,并据此判断是否有99%的把握认为“读书迷”与性别有关?

非读书迷

读书迷

合计

15

45

合计

附:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为常数).

(1)求的极值;

(2)设,记,已知为函数是两个零点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人组成一个小组参加电视台举办的听曲猜歌名活动,在每一轮活动中,依次播放三首乐曲,然后甲猜第一首,乙猜第二首,丙猜第三首,若有一人猜错,则活动立即结束;若三人均猜对,则该小组进入下一轮,该小组最多参加三轮活动.已知每一轮甲猜对歌名的概率是,乙猜对歌名的概率是,丙猜对歌名的概率是,甲、乙、丙猜对与否互不影响.

(I)求该小组未能进入第二轮的概率;

(Ⅱ)记乙猜歌曲的次数为随机变量,求的分布列和数学期望.

查看答案和解析>>

同步练习册答案