精英家教网 > 高中数学 > 题目详情
13.设0<x<2,函数f(x)=$\sqrt{3x•(8-3x})$的最大值是4.

分析 由0<x<2,f(x)=$\sqrt{3x•(8-3x})$=$\sqrt{-9(x-\frac{4}{3})^{2}+16}$,能求出函数f(x)=$\sqrt{3x•(8-3x})$的最大值.

解答 解:∵0<x<2,
∴f(x)=$\sqrt{3x•(8-3x})$=$\sqrt{24x-9{x}^{2}}$=$\sqrt{-9(x-\frac{4}{3})^{2}+16}$,
∴当x=$\frac{4}{3}$时,函数f(x)=$\sqrt{3x•(8-3x})$取最大值4.
故答案为:4.

点评 本查题考查函数的最大值的求法,考查二次函数、配方法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.从含有8件正品、2件次品的10件产品中,任意抽取3件,则必然事件是(  )
A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若命题“存在实数x,使得x2+(1-a)x+1<0”是真命题,则实数a的取值范围是(3,+∞)∪(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若sinα=-$\frac{3}{5}$,α是第四象限角,则cos($\frac{π}{4}$+α)的值是(  )
A.$\frac{4}{5}$B.$\frac{7\sqrt{2}}{10}$C.$\frac{\sqrt{2}}{10}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,且a1=2,an+1=$\frac{n+2}{n}$Sn(n=1,2,3,…).
(1)证明:数列{$\frac{{S}_{n}}{n}$}是等比数列;
(2)设bn=$\frac{{2}^{2n+1}}{{S}_{n}{S}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\sqrt{2x+5}$的定义域是[-$\frac{5}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若f(x)=|-x2+(m-1)x+3-m|在[-1,0]上是减函数,则m的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn,2Sn=an+1-2n+1+1,n∈N*,且a1,a2+5,a3成等差数列.
(1)证明$\left\{{\frac{a_n}{2^n}+1}\right\}$为等比数列,并求数列{an}的通项;
(2)设bn=log3(an+2n),且Tn=$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+{\frac{1}{{{b_3}b}}_4}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,证明Tn<1.
(3)在(2)小问的条件下,若对任意的n∈N*,不等式bn(1+n)-λn(bn+2)-6<0恒成立,试求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某年某学校游园有一个游戏,规则如下:盒子中有4个白球3个红球,每次从中取出一球,如果取出红球不放回,取出白球游戏结束.取出红球个数为X,奖品为Y支铅笔,Y=3-X,发放奖品后,把球全放回盒子,轮到下一名游戏者.
(1)试求某甲同学取出红球个数分布列;
(2 ) 甲、乙同学都进行了一次游戏,求甲比乙获铅笔数多的概率.

查看答案和解析>>

同步练习册答案