精英家教网 > 高中数学 > 题目详情
3.从含有8件正品、2件次品的10件产品中,任意抽取3件,则必然事件是(  )
A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品

分析 利用必然事件、随机事件、不可能事件的定义直接求解.

解答 解:从含有8件正品、2件次品的10件产品中,任意抽取3件,
在A 中,3件都是正品是随机事件,故A错误;
在B中,至少有1件次品是随机事件,故B错误;
在C中,3件都是次品是不可能事件,故C错误;
在D中,至少有1件正品是必然事件,故D正确.
故选:D.

点评 本题考查必然事件的判断,是基础题,解题时要认真审题,注意必然事件、随机事件、不可能事件的定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在东辰学校的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了90个面包,以x(单位:个,60≤x≤110)表示面包的需求量,T(单位:元)表示利润.
(Ⅰ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量x∈[60,70),则取x=65,且x=65的概率等于需求量落入[60,70)的频率),求食堂每天面包需求量的平均数.
(Ⅱ)求T关于x函数解析式;
(III)根据直方图估计利润T不少于100元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.正项数列{an}的前n项和为Sn满足${S_n}^2-({n^2}+n-1){S_n}-({n^2}+n)=0$.
(1)求Sn及an
(2)令${b_n}=\frac{n+1}{{{{(n+2)}^2}{a_n}^2}}$,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有$\frac{1}{18}≤{T_n}<\frac{5}{64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若二项式(x-$\frac{2}{\sqrt{x}}$)n的展开式中只有第5项的二项式系数最大,则展开式中含x2项的系数为1120.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知首项为1的数列{an}的前n项和为Sn,若点(Sn-1,an)(n≥2)在函数y=3x+4的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log2$\frac{{{a_{n+2}}}}{7}$,且bn=2n+1•cn,其中n∈N*,求数列{cn}的前前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知△ABC中,内角A,B,C的对边分别为a,b,c,若a,b,c成等比数列,则$\frac{{{a^2}+{b^2}}}{ab}$的取值范围为[2,$\sqrt{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知公差不为零的等差数列{an}中,a1=1且a1,a3,a9成等比数列,
(Ⅰ)求数列{an}的通项公式
(Ⅱ)设bn=n•2${\;}^{{a}_{n}}$求数列[bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知sin(3π-α)=$\frac{2}{3}$,则sinα=(  )
A.$-\frac{2}{3}$B.$\frac{2}{3}$C.-$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设0<x<2,函数f(x)=$\sqrt{3x•(8-3x})$的最大值是4.

查看答案和解析>>

同步练习册答案