精英家教网 > 高中数学 > 题目详情
18.已知首项为1的数列{an}的前n项和为Sn,若点(Sn-1,an)(n≥2)在函数y=3x+4的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log2$\frac{{{a_{n+2}}}}{7}$,且bn=2n+1•cn,其中n∈N*,求数列{cn}的前前n项和Tn

分析 (Ⅰ)利用点在直线上,列出关系式,推出数列是等比数列,然后求数列{an}的通项公式;
(Ⅱ)bn=log2$\frac{{{a_{n+2}}}}{7}$,且bn=2n+1•cn,化简求出cn,然后利用错位相减法求和即可.

解答 解:(Ⅰ)因为点(Sn-1,an)(n≥2)在函数y=3x+4的图象上,
所以an=3Sn-1+4(n≥2),①…(1分)
所以a2=3S1+4=7,an+1=3Sn+4,②
由②-①得an+1=4an(n≥2)…(3分)
所以${a_n}={a_2}×{4^{n-2}}=7×{4^{n-2}}$…(4分)
此式对n=1不成立,所以${a_n}=\left\{\begin{array}{l}1\;\;\;(n=1)\\ 7×{4^{n-2}}\;(n≥2)\end{array}\right.$…(5分)
(Ⅱ)由(Ⅰ)知${a_n}=\left\{\begin{array}{l}1\;\;\;(n=1)\\ 7×{4^{n-2}}\;(n≥2)\end{array}\right.$,
所以${b_n}={log_2}\frac{{{a_{n+2}}}}{7}={log_2}{4^n}=2n$…(6分)
所以${c_n}=\frac{b_n}{{{2^{n+1}}}}=\frac{n}{2^n}$…7分
所以${T_n}=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+…+\frac{n}{2^n}$③
$\frac{1}{2}{T_n}=\frac{1}{2^2}+\frac{2}{2^3}+\frac{3}{2^4}+…+\frac{n-1}{2^n}+\frac{n}{{{2^{n+1}}}}$④…(8分)
③-④得$\frac{1}{2}{T_n}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+…+\frac{1}{2^n}-\frac{n}{{{2^{n+1}}}}$…(10分)
所以$\frac{1}{2}{T_n}=\frac{{\frac{1}{2}[1-{{(\frac{1}{2})}^n}]}}{{1-\frac{1}{2}}}-\frac{n}{{{2^{n+1}}}}$…(11分)
所以$\frac{1}{2}{T_n}=1-{(\frac{1}{2})^n}-\frac{n}{{{2^{n+1}}}}=1-\frac{n+2}{{{2^{n+1}}}}$,
所以${T_n}=2-\frac{n+2}{2^n}$…(12分)

点评 本题考查数列求和,数列的递推关系式的应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=1,M为PD的中点.
(1)证明:PB∥平面ACM;
(2)设直线AM与平面ABCD所成的角为α,求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=log2(2x+1)-$\frac{1}{2}$x.
(Ⅰ)求证:函数f(x)是偶函数.
(Ⅱ)求证:对x∈R,f(x)≥1恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知有相同的两个焦点F1,F2的椭圆$\frac{x^2}{m}+{y^2}$=1(m>1)和双曲线$\frac{x^2}{n}-3{y^2}$=1(n>0),P是它们的一个交点,则∠F1PF2=(  )
A.30°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知可导函数f(x)的导函数为f′(x),若对任意的x∈R,都有f(x)>f′(x)+2,且f(x)-2019为奇函数,则不等式f(x)-2017ex<2的解集为(  )
A.(-∞,0)B.(0,+∞)C.$(-∞,\frac{1}{e^2})$D.$(\frac{1}{e^2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.从含有8件正品、2件次品的10件产品中,任意抽取3件,则必然事件是(  )
A.3件都是正品B.至少有1件次品C.3件都是次品D.至少有1件正品

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知$S=C_{27}^1+C_{27}^2+C_{27}^3+…+C_{27}^{27}$,则S除以9所得的余数是7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知α,β为平面,a,b,c为直线,下列说法正确的是(  )
A.若b∥a,a?α,则b∥αB.若α⊥β,α∩β=c,b⊥c,则b⊥β
C.若a⊥c,b⊥c,则a∥bD.若a∩b=A,a?α,b?α,a∥β,b∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn,且a1=2,an+1=$\frac{n+2}{n}$Sn(n=1,2,3,…).
(1)证明:数列{$\frac{{S}_{n}}{n}$}是等比数列;
(2)设bn=$\frac{{2}^{2n+1}}{{S}_{n}{S}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案