分析 (Ⅰ)利用点在直线上,列出关系式,推出数列是等比数列,然后求数列{an}的通项公式;
(Ⅱ)bn=log2$\frac{{{a_{n+2}}}}{7}$,且bn=2n+1•cn,化简求出cn,然后利用错位相减法求和即可.
解答 解:(Ⅰ)因为点(Sn-1,an)(n≥2)在函数y=3x+4的图象上,
所以an=3Sn-1+4(n≥2),①…(1分)
所以a2=3S1+4=7,an+1=3Sn+4,②
由②-①得an+1=4an(n≥2)…(3分)
所以${a_n}={a_2}×{4^{n-2}}=7×{4^{n-2}}$…(4分)
此式对n=1不成立,所以${a_n}=\left\{\begin{array}{l}1\;\;\;(n=1)\\ 7×{4^{n-2}}\;(n≥2)\end{array}\right.$…(5分)
(Ⅱ)由(Ⅰ)知${a_n}=\left\{\begin{array}{l}1\;\;\;(n=1)\\ 7×{4^{n-2}}\;(n≥2)\end{array}\right.$,
所以${b_n}={log_2}\frac{{{a_{n+2}}}}{7}={log_2}{4^n}=2n$…(6分)
所以${c_n}=\frac{b_n}{{{2^{n+1}}}}=\frac{n}{2^n}$…7分
所以${T_n}=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+…+\frac{n}{2^n}$③
$\frac{1}{2}{T_n}=\frac{1}{2^2}+\frac{2}{2^3}+\frac{3}{2^4}+…+\frac{n-1}{2^n}+\frac{n}{{{2^{n+1}}}}$④…(8分)
③-④得$\frac{1}{2}{T_n}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+\frac{1}{2^4}+…+\frac{1}{2^n}-\frac{n}{{{2^{n+1}}}}$…(10分)
所以$\frac{1}{2}{T_n}=\frac{{\frac{1}{2}[1-{{(\frac{1}{2})}^n}]}}{{1-\frac{1}{2}}}-\frac{n}{{{2^{n+1}}}}$…(11分)
所以$\frac{1}{2}{T_n}=1-{(\frac{1}{2})^n}-\frac{n}{{{2^{n+1}}}}=1-\frac{n+2}{{{2^{n+1}}}}$,
所以${T_n}=2-\frac{n+2}{2^n}$…(12分)
点评 本题考查数列求和,数列的递推关系式的应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 90° | D. | 120° |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (0,+∞) | C. | $(-∞,\frac{1}{e^2})$ | D. | $(\frac{1}{e^2},+∞)$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3件都是正品 | B. | 至少有1件次品 | C. | 3件都是次品 | D. | 至少有1件正品 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若b∥a,a?α,则b∥α | B. | 若α⊥β,α∩β=c,b⊥c,则b⊥β | ||
| C. | 若a⊥c,b⊥c,则a∥b | D. | 若a∩b=A,a?α,b?α,a∥β,b∥β,则α∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com