精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=log2(2x+1)-$\frac{1}{2}$x.
(Ⅰ)求证:函数f(x)是偶函数.
(Ⅱ)求证:对x∈R,f(x)≥1恒成立.

分析 (Ⅰ)根据函数奇偶性的定义判断函数的奇偶性即可;(Ⅱ)将f(x)变形,结合不等式的性质求出f(x)的最小值,即可证明结论.

解答 解:(Ⅰ)由题意得f(x)的定义域是R,
∵f(-x)=log2(2-x+1)+$\frac{1}{2}$x=log2(2x+1)-x+$\frac{1}{2}$x=log2(2x+1)-$\frac{1}{2}$x=f(x),
故函数f(x)是偶函数;
(Ⅱ)f(x)=log2(2x+1)-$\frac{1}{2}$x
=log2(2x+1)-log2$\sqrt{{2}^{x}}$
=log2($\sqrt{{2}^{x}}$+$\frac{1}{\sqrt{{2}^{x}}}$)
≥log22=1,(当且仅当x=0时取“=”),
故原命题得证.

点评 本题考查了函数的奇偶性问题,考查基本不等式的性质的应用以及转化思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知函数$f(x)={log_a}x-3{log_a}2,\;a∈\{\frac{1}{5},\frac{1}{4},2,4,5,8,9\}$,则f(3a+2)>f(2a)>0的概率为(  )
A.$\frac{1}{3}$B.$\frac{3}{7}$C.$\frac{1}{2}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知p是r的充分条件,而r是q的必要条件,同时又是s的充分条件,q是s的必要条件,试判断:
(1)s是p的什么条件?
(2)p是q的什么条件?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设数列{an}(n∈N*)的前n项和为sn,满足sn=2an-2
(1)求数列{an}的通项公式;
(2)设数列$\left\{{\frac{1}{a_n}}\right\}$的前n项和Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知全集U={a1,a2,a3,a4},集合A是集合U的恰有两个元素的子集,且满足下列三个条件:①若a1∈A,则a2∈A;②若a3∉A,则a2∉A;③若a3∈A,则a4∉A,则集合A={a2,a3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.正项数列{an}的前n项和为Sn满足${S_n}^2-({n^2}+n-1){S_n}-({n^2}+n)=0$.
(1)求Sn及an
(2)令${b_n}=\frac{n+1}{{{{(n+2)}^2}{a_n}^2}}$,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有$\frac{1}{18}≤{T_n}<\frac{5}{64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{an}满足a1=$\frac{899}{9}$,an+1=10an+1.
(1)证明数列{an+$\frac{1}{9}$}是等比数列,并求数列{an}的通项公式;
(2)数列{bn}满足bn=lg(an+$\frac{1}{9}$),Tn为数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和,求证:Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知首项为1的数列{an}的前n项和为Sn,若点(Sn-1,an)(n≥2)在函数y=3x+4的图象上.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=log2$\frac{{{a_{n+2}}}}{7}$,且bn=2n+1•cn,其中n∈N*,求数列{cn}的前前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.第一届“一带一路”国际合作高峰论坛于2017年5月14日至15日在北京举行,为了保护各国元首的安全,将5个安保小组全部安排到指定三个区域内工作,且这三个区域每个区域至少有一个安保小组,则这样的安排的方法共有(  )
A.96种B.100种C.124种D.150种

查看答案和解析>>

同步练习册答案