精英家教网 > 高中数学 > 题目详情

【题目】某中学为提升学生的数学学习能力,进行了主题分别为“运算”、“推理”、“想象”、“建模”四场竞赛.规定:每场竞赛前三名得分分别为,且),选手的最终得分为各场得分之和.最终甲、乙、丙三人包揽了每场竞赛的前三名,在四场竞赛中,已知甲最终得分为分,乙最终得分为分,丙最终得分为分,且乙在“运算”这场竞赛中获得了第一名,那么“运算”这场竞赛的第三名是( )

A.B.C.D.甲和丙都有可能

【答案】C

【解析】

总分为,得出,只有两种可能,再分类讨论,能得出结果.

总分为,可得

只有两种可能.

的值分别为,若乙在“运算”中得到第一名,得分,即使他在剩下的三场比赛中全得到第三名,得分总数为,不合乎题意.

的值分别为,乙的得分组成只能是“运算”、“推理”、“想象”、“建模”分别得分分,即乙在“运算”中得到第一名,其余三项均为第三名.

由于甲得分为分,其得分组成只能是“运算”、“推理”、“想象”、“建模”分别得分分,在“运算”比赛中,甲、乙、丙三人得分分别是.

因此,获得“运算”这场竞赛的第三名只能是丙,故选:C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校为了解学生一次考试后数学、物理两个科目的成绩情况,从中随机抽取了25位考生的成绩进行统计分析.25位考生的数学成绩已经统计在茎叶图中,物理成绩如下:

)请根据数据在答题卡的茎叶图中完成物理成绩统计;

)请根据数据在答题卡上完成数学成绩的频数分布表及数学成绩的频率分布直方图;

数学成绩分组

[5060

[6070

[7080

[8090

[90100

[100110

[110120]

频数

)设上述样本中第i位考生的数学、物理成绩分别为xiyii=12325).通过对样本数据进行初步处理发现:数学、物理成绩具有线性相关关系,得到:=86=64xi-)(yi-=4698xi-2=5524≈0.85.求y关于x的线性回归方程,并据此预测当某考生的数学成绩为100分时,该考生的物理成绩(精确到1分).

附:回归直线方程的斜率和截距的最小二乘估计公式分别为:==-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在上海高考改革方案中,要求每位考生必须在物理、化学、生物、政治、历史、地理六门学科中选择三门参加等级考试,受各因素影响,小李同学决定选择物理,并在生物和地理中至少选择一门.

1)小李同学共有多少种不同的选科方案?

2)若小吴同学已确定选择生物和地理,求小吴同学与小李同学选科方案相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了解本市万名学生的汉字书写水平,在全市范围内进行了汉字听写考试,发现其成绩服从正态分布,现从某校随机抽取了名学生,将所得成绩整理后,绘制出如图所示的频率分布直方图.

1)估算该校名学生成绩的平均值(同一组中的数据用该组区间的中点值作代表);

2)求这名学生成绩在内的人数;

3)现从该校名考生成绩在的学生中随机抽取两人,该两人成绩排名(从高到低)在全市前名的人数记为,求的分布列和数学期望.

参考数据:若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项为1..

1)若为常数列,求的值:

2)若为公比为2的等比数列,求的解析式:

3)是否存在等差数列,使得对一切都成立?若存在,求出数列的通项公式:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的图像在点处的切线方程;

(2)求在区间上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高一年级有学生480名,对他们进行政治面貌和性别的调查,其结果如下:

性别

团员

群众

80

180

1)若随机抽取一人,是团员的概率为,求

2)在团员学生中,按性别用分层抽样的方法,抽取一个样本容量为5的样本,然后在这5名团员中任选2人,求两人中至多有1个女生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

(1)若是定义域上的单调函数,求的取值范围.

(2)设分别为的极大值和极小值,若,求取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在R上的奇函数

(1)求实数的值

(2)如果对任意,不等式恒成立,求实数的取值范围

查看答案和解析>>

同步练习册答案