精英家教网 > 高中数学 > 题目详情
2.如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为15°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值为$\frac{\sqrt{6}}{6}$.

分析 当A,B,O,C四点共面时,|OA|最大,过D作平面ABOC的垂线DN,则垂足为△ABC的中心,求出N到平面α的距离d,则直线CD与平面α所成角的正弦值为$\frac{d}{CD}$.

解答 解:当四边形ABOC为平面四边形时,点A到点O的距离最大.
此时平面ABOC⊥平面α,过D作DN⊥平面ABOC,垂足为N,
则N为正三角形ABC的中心.
设正四面体的边长为1,则CN=$\frac{2}{3}$CP=$\frac{\sqrt{3}}{3}$,
∵∠BCO=15°,∠BCP=30°,∴∠OCN=45°,
∴N到平面α的距离d=$\frac{\sqrt{3}}{3}×\frac{\sqrt{2}}{2}$=$\frac{\sqrt{6}}{6}$.
过D作DM⊥平面α,垂足为M,则DM=d=$\frac{\sqrt{6}}{6}$,
∴直线CD与平面α所成角的正弦值为$\frac{DM}{CD}$=$\frac{\sqrt{6}}{6}$.
故答案为:$\frac{{\sqrt{6}}}{6}$

点评 本题考查了线面角的计算,常见几何体的结构特征,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若两个正实数x,y满足$\frac{1}{x}$+$\frac{4}{y}$=1,且不等式x+$\frac{y}{4}$<m2-3m有解,则实数m的取值范围是(-∞,-1)∪(4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司采用众筹的方式募集资金,开发一种创新科技产品,为了解募集的资金x(单位:万元)与收益率y之间的关系,对近6个季度众筹到的资金xi和收益率yi的数据进行统计,得到数据表:
x2.002.202.603.203.404.00
y0.220.200.300.480.560.60
(Ⅰ)通过绘制并观察散点图的分布特征后,分别选用y=a+bx与y=c+dlgx作为众筹到的资金x与收益率y的拟合方式,再经过计算,得到这两种拟合方式的回归方程y=0.34+0.02x,y=-0.27+1.47lgx和如表的统计数值,试运用相关指数比较以上两回归方程的拟合效果:
$\sum_{i=1}^{6}({y}_{i}-\overline{y})^{2}$ y=a+bx y=c+dlgx
 $\sum_{i=1}^{6}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}$ $\sum_{i=1}^{6}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}$
 0.150.13 0.01
(Ⅱ)根据以上拟合效果较好的回归方程,解答:
(i)预测众筹资金为5万元时的收益率.(精确到0.0001)
(ii)若众筹资金服从正态分布N(μ,σ2),试求收益率在75.75%以上的概率.
附:(1)相关指数R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$.
(2)若随机变量X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974;
(3)参考数据:lg2=0.3010,lg3=0.4771.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.(1)求值:sin(-90°)+3cos0°-2tan135°-4cos300°.
(2)已知tanθ=$\frac{4}{3}$,其中θ∈(0,$\frac{π}{2}$).求sinθ-cosθ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.7个学生排成一排,在下列情况下,各有多少种不同排法?
(1)甲排头,
(2)甲不排头,也不排尾,
(3)甲、乙、丙三人必须在一起,
(4)甲、乙之间有且只有两人,
(5)甲、乙、丙三人两两不相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知随机变量X满足D(X)=1,则D(2X+3)=(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(普通班题)已知sinα=$\frac{3}{5}$,且$\frac{π}{2}$<α<π.
(1)求cos($\frac{π}{4}$-α)的值;
(2)求sin($\frac{2π}{3}$+2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=sin($\frac{π}{6}$-x)sinx的最大值是(  )
A.$\frac{1}{2}$B.1C.$\frac{1}{2}$-$\frac{\sqrt{3}}{4}$D.$\frac{1}{2}$+$\frac{{\sqrt{3}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,长方体ABCD-EFGH,底面是边长为2$\sqrt{3}$的正方形,DH=2,P为AH中点.
(1)求四棱锥F-ABCD的体积;
(2)若点M在正方形ABCD内(包括边界),且三棱锥P-AMB体积是四棱锥F-ABCD体积的$\frac{1}{8}$,请指出满足要求的点M的轨迹,并在图中画出轨迹图形.

查看答案和解析>>

同步练习册答案