精英家教网 > 高中数学 > 题目详情
7.已知随机变量X满足D(X)=1,则D(2X+3)=(  )
A.2B.4C.6D.8

分析 由随机变量X满足D(X)=1及D(2X+3)=22D(X),能求出结果.

解答 解:∵随机变量X满足D(X)=1,
∴D(2X+3)=22D(X)=4D(X)=4.
故选:B.

点评 本题考查离散型随机变量的方差的求法,是基础题,解题时要认真审题,注意方差性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\sqrt{1+sinx}$+$\sqrt{1-sinx}$,则下列命题中正确命题的序号是①②④.
①f(x)是偶函数;
②f(x)的值域是[$\sqrt{2}$,2];
③当x∈[0,$\frac{π}{2}$]时,f(x)单调递增;
④当且仅当x=2kπ±$\frac{π}{2}$(k∈Z)时,f(x)=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在平面直角坐标系中,曲线C1的参数方程为$\left\{\begin{array}{l}{x=cosφ}\\{y=2sinφ}\end{array}\right.$(φ为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2是圆心在极轴上且经过极点的圆,射线θ=$\frac{π}{3}$与曲线C2交于点D(4,$\frac{π}{3}$).
(1)求曲线C1的普通方程及C2的直角坐标方程;
(2)在极坐标系中,A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)是曲线C1的两点,求$\frac{1}{{{ρ}_{1}}^{2}}$+$\frac{1}{{{ρ}_{2}}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=1+2sinxcosx
(1)求函数f(x)的最小正周期;
(2)求函数f(x)在区间[-$\frac{π}{2}$,$\frac{π}{6}$]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,正四面体ABCD的顶点C在平面α内,且直线BC与平面α所成角为15°,顶点B在平面α上的射影为点O,当顶点A与点O的距离最大时,直线CD与平面α所成角的正弦值为$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,圆C经过A(0,1),B(3,4),C(6,1)三点.
(Ⅰ)求圆C的方程;
(Ⅱ)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2sinx(sinx+$\sqrt{3}$cosx)-1(其中x∈R),求:
(1)函数f(x)的最小正周期;
(2)函数f(x)的单调减区间;
(3)函数f(x)图象的对称轴和对称中心.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x>$\frac{1}{2}$,那么函数y=2x+2+$\frac{1}{2x-1}$的最小值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,则输出的S的值为(  )
A.28B.12C.20D.-12

查看答案和解析>>

同步练习册答案