精英家教网 > 高中数学 > 题目详情
16.已知△ABC的外接圆的半径为1,A为锐角,且sinA=$\frac{3}{5}$.
(1)若AC=2,求AB的长;
(2)若tan(A-B)=-$\frac{1}{3}$,求tanC的值.

分析 (1)由正弦定理$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2R,求出a,由sinA=$\frac{3}{5}$,求出cosA,利用余弦定理可得AB的长.
(2)构造思想,利用tanB=tan[A-(A-B)]求出tanB,tanC=-tan(A+B)可得答案.

解答 解:(1)在△ABC中,由正弦定理$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=2R得,
a=2RsinA=2×1×$\frac{3}{5}$=$\frac{6}{5}$,
∵sinA=$\frac{3}{4}$,A∈(0,$\frac{π}{2}$),
∴cosA=$\sqrt{1-si{n}^{2}A}$=$\sqrt{1-(\frac{3}{5})^{2}}$=$\frac{4}{5}$,
在△ABC中,由余弦定理cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$得,
即cosA=$\frac{4}{5}$=$\frac{{2}^{2}+{c}^{2}-(\frac{6}{5})^{2}}{2×2×c}$,
解得c=$\frac{8}{5}$,
∴AB的长为$\frac{8}{5}$;
(2)由(1)知,tanA=$\frac{sinA}{cosA}$=$\frac{\frac{3}{5}}{\frac{4}{5}}$=$\frac{3}{4}$,
∴tanB=tan[A-(A-B)]=$\frac{tanA-tan(A-B)}{1+tanAtan(A-B)}$=$\frac{\frac{3}{4}+\frac{1}{3}}{1-\frac{3}{4}×\frac{1}{3}}$=$\frac{13}{9}$.
在△ABC中,A+B+C=π,
∴tanC=-tan(A+B)=$\frac{tanA+tanB}{tanAtanB-1}$=$\frac{\frac{3}{4}+\frac{13}{9}}{\frac{3}{4}×\frac{13}{9}-1}$=$\frac{79}{3}$.

点评 本题考查了正余弦定理和正切函数的和与差公式运用,构造思想和计算能力.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则该几何体为(  )
A.四棱锥B.三棱锥C.三棱柱D.圆锥

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知点P在曲线C1:$\frac{x^2}{25}+\frac{y^2}{9}=1$上,点Q在曲线C2:(x-4)2+y2=1上,点R在曲线C3:(x+4)2+y2=1上,则|PQ|+|PR|的最大值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=mlnx+nx,(m,n∈R),曲线y=f(x)在点(1,f(1))处的切线方程是x-2y-2=0,则m+n=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图:在一个奥运场馆建设现场,现准备把一个半径为$\sqrt{3}$m的球形工件吊起平放到6m高的平台上,工地上有一个吊臂长DF=12m的吊车,吊车底座FG高1.5m.当物件与吊臂接触后,钢索CD长可通过顶点D处的滑轮自动调节并保持物件始终与吊臂接触.求物件能被吊车吊起的最大高度,并判断能否将该球形工件吊到平台上?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.省环保研究所对市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数f(x)与时刻x(时)的关系为f(x)=|$\frac{2x}{{x}^{2}+1}$-a|+2a+$\frac{2}{3}$,x∈[0,24],其中a是与气象有关的参数,且a∈[0,1],若用每天f(x)的最大值为当天的综合放射性污染指数,并记作M(a).
(1)令t=$\frac{2x}{{x}^{2}+1}$,x∈[0,24],求t的取值范围;
(2)省政府规定,每天的综合放射性污染指数不得超过2,试问目前市中心的综合放射性污染指数是否超标?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.三视图完全相同的几何体是(  )
A.圆锥B.长方体C.正方体D.正四面体

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在△ABC中,若$\frac{cosA}{cosB}$=$\frac{b}{a}$,$\frac{cosB}{cosC}$=$\frac{c}{b}$,则△ABC是(  )
A.直角三角形B.等腰三角形,但不是正三角形
C.直角三角形或等腰三角形D.正三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知在数列{an}中,a1=2,a2=4,且an+1=3an-2an-1(n≥2).
(1)证明:数列{an+1-an}为等比数列,并求{an}的通项公式;
(2)令bn=$\frac{2n-1}{{a}_{n}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

同步练习册答案