精英家教网 > 高中数学 > 题目详情
13.已知在数列{an}中,a1=2,a2=4,且an+1=3an-2an-1(n≥2).
(1)证明:数列{an+1-an}为等比数列,并求{an}的通项公式;
(2)令bn=$\frac{2n-1}{{a}_{n}}$,求数列{bn}的前n项和为Tn

分析 (1)an+1=3an-2an-1(n≥2).变形an+1-an=2(an-an-1)(n≥2).利用等比数列的定义即可证明.利用通项公式可得an+1-an=2n.再利用累加求和方法即可得出.
(2)bn=$\frac{2n-1}{{a}_{n}}$=$\frac{2n-1}{{2}^{n}}$,利用错位相减法即可得出.

解答 (1)证明:∵an+1=3an-2an-1(n≥2).
∴an+1-an=2(an-an-1)(n≥2).
又a2-a1=2.
∴数列{an+1-an}为等比数列,公比为2,首项为2.
∴an+1-an=2n
∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1
=2n-1+2n-2+…+2+2
=$\frac{{2}^{n}-1}{2-1}+1$=2n
(2)解:bn=$\frac{2n-1}{{a}_{n}}$=$\frac{2n-1}{{2}^{n}}$,
∴数列{bn}的前n项和为Tn=$\frac{1}{2}+\frac{3}{{2}^{2}}$+$\frac{5}{{2}^{3}}$+…+$\frac{2n-1}{{2}^{n}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{{2}^{2}}+\frac{3}{{2}^{3}}$+…+$\frac{2n-3}{{2}^{n}}$+$\frac{2n-1}{{2}^{n+1}}$,
∴$\frac{1}{2}{T}_{n}$=$\frac{1}{2}$+2$(\frac{1}{{2}^{2}}+\frac{1}{{2}^{3}}+…+\frac{1}{{2}^{n}})$-$\frac{2n-1}{{2}^{n+1}}$=$\frac{1}{2}+2×\frac{\frac{1}{4}(1-\frac{1}{{2}^{n-1}})}{1-\frac{1}{2}}$-$\frac{2n-1}{{2}^{n+1}}$,
∴Tn=3-$\frac{2n+3}{{2}^{n}}$.

点评 本题考查了数列递推关系、等比数列的定义通项公式与求和公式、错位相减法、累加求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知△ABC的外接圆的半径为1,A为锐角,且sinA=$\frac{3}{5}$.
(1)若AC=2,求AB的长;
(2)若tan(A-B)=-$\frac{1}{3}$,求tanC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}满足a2=1,|an+1-an|=$\frac{1}{n(n+2)}$,若a2n+1>a2n-1,a2n+2<a2n(n∈N+)则数列{(-1)nan}的前40项的和为(  )
A.$\frac{19}{20}$B.$\frac{325}{462}$C.$\frac{41}{84}$D.$\frac{20}{41}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x2+mx+ln x是单调递增函数,则m的取值范围是[-2$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数y=log${\;}_{\frac{1}{2}}$x,当y=-1时,x=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\frac{lnx+1}{x}$.
(1)求曲线y=f(x)在点(e,f(e))处的切线方程;
(2)当x≥1时,不等式f(x)-$\frac{1}{x}$≥$\frac{a({x}^{2}-1)}{x}$恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设$\overrightarrow{a}$,$\overrightarrow{b}$是不共线的两个非零向量.
(1)若$\overrightarrow{OA}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{OB}$=3$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{a}$-3$\overrightarrow{b}$,求证:A,B,C三点共线.
(2)若$\overrightarrow{AB}$=$\overrightarrow{a}$+$\overrightarrow{b}$,$\overrightarrow{BC}$=2$\overrightarrow{a}$-3$\overrightarrow{b}$,$\overrightarrow{CD}$=2$\overrightarrow{a}$-k$\overrightarrow{b}$,且A,C,D三点共线,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,角A,B,C所对的边分别为a,b,c,若tan A=7tan B,$\frac{{a}^{2}-{b}^{2}}{c}$=3,则c=(  )
A.6B.3C.7D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知正数x,y满足$\frac{1}{x}$$+\frac{2}{y}$=1,则log2x+log2y的最小值为3.

查看答案和解析>>

同步练习册答案