精英家教网 > 高中数学 > 题目详情

如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(xy1),B(x2,y2).

(1) 求y1+y2的值;

(2) 若y1≥0,y2≥0,求△PAB面积的最大值.


解:(1) 因为A(x1,y1),B(x2,y2)在抛物线C:y2=4x上,所以A,kPA,同理kPB,依题意有kPA=-kPB,因为所以y1+y2=4.

(2) 由(1)知kAB=1,设AB的方程为y-y1=x-,即x-y+y1=0,P到AB的距离为d=,AB=·,所以S△PAB××2|2-y1|=|y-4y1-12||y1-2|=|(y1-2)2-16|·|y1-2|,令y1-2=t,由y1+y2=4,y1≥0,y2≥0,可知-2≤t≤2.S△PAB|t3-16t|,因为S△PAB|t3-16t|为偶函数,只考虑0≤t≤2的情况,记f(t)=|t3-16t|=16t-t3,f′(t)=16-3t2>0,故f(t)在[0,2]是单调增函数,故f(t)的最大值为f(2)=24,故S△PAB的最大值为6.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


函数f(x)=sin,x∈R的最小正周期为________.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知角α终边上一点P(-4a,3a)(a<0),则sinα=________.

查看答案和解析>>

科目:高中数学 来源: 题型:


 椭圆=1的两焦点为F1、F2,一直线过F1交椭圆于P、Q,则△PQF2的周长为________.

查看答案和解析>>

科目:高中数学 来源: 题型:


如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.

(1) 求椭圆C的方程;

(2) 点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:


如图,设E:=1(a>b>0)的焦点为F1与F2,且P∈E,∠F1PF2=2θ.求证:△PF1F2的面积S=b2tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:


 已知椭圆C:+y2=1的两焦点为F1,F2,点P(x0,y0)满足+y≤1,则PF1+PF2的取值范围为________.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆C:=1(a>b>0)的离心率e=,一条准线方程为x=

(1) 求椭圆C的方程;

(2) 设G、H为椭圆C上的两个动点,O为坐标原点,且OG⊥OH.

① 当直线OG的倾斜角为60°时,求△GOH的面积;

② 是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知F1、F2是椭圆C的左、右焦点,点P在椭圆上,且满足PF1=2PF2,∠PF1F2=30°,则椭圆的离心率为________.

查看答案和解析>>

同步练习册答案