精英家教网 > 高中数学 > 题目详情

如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.

(1) 求椭圆C的方程;

(2) 点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.


解:(1) 设椭圆C的方程为=1(a>b>0),由已知,得∴b=.

所以椭圆C的方程为=1.

(2) 由=e=,得PF=PM.∴PF≠PM.

①若PF=FM,则PF+FM=PM,与“三角形两边之和大于第三边”矛盾,∴PF不可能与PM相等.

②若FM=PM,设P(x,y)(x≠±2),则M(4,y).∴=4-x,∴9+y2=16-8x+x2.又由=1,得y2=3-x2.∴9+3-x2=16-8x+x2

x2-8x+4=0.∴7x2-32x+16=0.∴x=或x=4.

∵x∈(-2,2),∴x=.∴P.综上,存在点P,使得△PFM为等腰三角形.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


设θ为第二象限角,若tan,则sinθ+cosθ=________.

查看答案和解析>>

科目:高中数学 来源: 题型:


 已知在△ABC中,sinA+cosA=.

(1) 求sinA·cosA;

(2) 判断△ABC是锐角三角形还是钝角三角形;

(3) 求tanA的值.

查看答案和解析>>

科目:高中数学 来源: 题型:


设集合M=,N={α|-π<α<π},则M∩N=________.

查看答案和解析>>

科目:高中数学 来源: 题型:


若斜率为的直线l与椭圆=1(a>b>0)有两个不同的交点,且这两个交点在x轴上的射影恰好是椭圆的两个焦点,则该椭圆的离心率为________.

查看答案和解析>>

科目:高中数学 来源: 题型:


如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(xy1),B(x2,y2).

(1) 求y1+y2的值;

(2) 若y1≥0,y2≥0,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆=1(a>b>0)的离心率为,且过点P,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,

过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.

(1) 求椭圆方程;

(2) 若圆N与x轴相切,求圆N的方程;

(3) 设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:


 在平面直角坐标系xOy中,抛物线C的顶点在原点,焦点F的坐标为(1,0).

(1) 求抛物线C的标准方程;

(2) 设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为-4,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:


椭圆=1(a>b>0)的右焦点F,其右准线与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是________.

查看答案和解析>>

同步练习册答案