如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.
(1) 求椭圆C的方程;
(2) 点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,说明理由.![]()
科目:高中数学 来源: 题型:
已知在△ABC中,sinA+cosA=
.
(1) 求sinA·cosA;
(2) 判断△ABC是锐角三角形还是钝角三角形;
(3) 求tanA的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(x,y1),B(x2,y2).
(1) 求y1+y2的值;
(2) 若y1≥0,y2≥0,求△PAB面积的最大值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆
+
=1(a>b>0)的离心率为
,且过点P
,A为上顶点,F为右焦点.点Q(0,t)是线段OA(除端点外)上的一个动点,
![]()
过Q作平行于x轴的直线交直线AP于点M,以QM为直径的圆的圆心为N.
(1) 求椭圆方程;
(2) 若圆N与x轴相切,求圆N的方程;
(3) 设点R为圆N上的动点,点R到直线PF的最大距离为d,求d的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
在平面直角坐标系xOy中,抛物线C的顶点在原点,焦点F的坐标为(1,0).
(1) 求抛物线C的标准方程;
(2) 设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为-4,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
椭圆
=1(a>b>0)的右焦点F,其右准线与x轴的交点为A,在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆离心率的取值范围是________.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com