已知椭圆C:
=1(a>b>0)的离心率e=
,一条准线方程为x=![]()
(1) 求椭圆C的方程;
(2) 设G、H为椭圆C上的两个动点,O为坐标原点,且OG⊥OH.
① 当直线OG的倾斜角为60°时,求△GOH的面积;
② 是否存在以原点O为圆心的定圆,使得该定圆始终与直线GH相切?若存在,请求出该定圆方程;若不存在,请说明理由.
科目:高中数学 来源: 题型:
如图,过抛物线C:y2=4x上一点P(1,-2)作倾斜角互补的两条直线,分别与抛物线交于点A(x,y1),B(x2,y2).
(1) 求y1+y2的值;
(2) 若y1≥0,y2≥0,求△PAB面积的最大值.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.
(1) 若直线l过点A(4,0),且被圆C1截得的弦长为2
,求直线l的方程;
(2) 设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
在平面直角坐标系xOy中,抛物线C的顶点在原点,焦点F的坐标为(1,0).
(1) 求抛物线C的标准方程;
(2) 设M、N是抛物线C的准线上的两个动点,且它们的纵坐标之积为-4,直线MO、NO与抛物线的交点分别为点A、B,求证:动直线AB恒过一个定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
在平面直角坐标系xOy中,抛物线C的顶点在原点,经过点A(2,2),其焦点F在x轴上.
![]()
(1) 求抛物线C的标准方程;
(2) 求过点F,且与直线OA垂直的直线的方程;
(3) 设过点M(m,0)(m>0)的直线交抛物线C于D、E两点,ME=2DM,记D和E两点间的距离为f(m),求f(m)关于m的表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com