【题目】王老师的班上有四个体育健将甲、乙、丙、丁,他们都特别擅长短跑,在某次运动会上,他们四人要组成一个米接力队,王老师要安排他们四个人的出场顺序,以下是他们四人的对话:
甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;
丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒;
王老师听了他们四人的对话,安排了一种合理的出场顺序,满足了他们的所有要求, 据此我们可以断定,在王老师安排的出场顺序中,跑第三棒的人是( )
A. 甲 B. 乙 C. 丙 D. 丁
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数).
(1)求曲线的普通方程;
(2)在以原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为,过直线上一点引曲线的切线,切点为,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,(其中,,)的图象与轴的交点中,相邻两个交点之间的距离为,且图象上一个最高点为.
(1)求的解析式;
(2)先把函数的图象向左平移个单位长度,然后再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),得到函数的图象,试写出函数的解析式.
(3)在(2)的条件下,若存在,使得不等式成立,求实数的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个命题:
①在中,若,则;
②已知点,则函数的图象上存在一点,使得;
③函数是周期函数,且周期与有关,与无关;
④设方程的解是,方程的解是,则.
其中真命题的序号是______.(把你认为是真命题的序号都填上)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,其中常数
(1)当时,讨论的单调性
(2)当时,是否存在整数使得关于的不等式在区间内有解?若存在,求出整数的最小值;若不存在,请说明理由.
参考数据:,,,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点与短轴的一个顶点构成底边为,顶角为的等腰三角形.
(1)求椭圆的方程;
(2)设、、是椭圆上三动点,且,线段的中点为,,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图象中相邻两条对称轴之间的距离为,且直线是其图象的一条对称轴.
(1)求,的值;
(2)在图中画出函数在区间上的图象;
(3)将函数的图象上各点的横坐标缩短为原来的(纵坐标不变),再把得到的图象向左平移个单位,得到的图象,求单调减区间.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com