精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中,为梯形,

(1)在线段上,满足平面,,求的值

(2)已知的交点为,若,且平面平面,求二面角平面角的正切值

【答案】1,(2

【解析】

1)首先延长交于点,连接,根据线面平行的性质得到,又因为的中点,所以的中点,即可得到的值.

2)在直角梯形中证得,根据勾股定理证得,即证平面,再过,连接为二面角的平面角,求其正切值即可.

1

延长交于点,连接.

因为

所以,即的中点.

因为平面,平面平面

所以.

又因为的中点,所以的中点.

.

2

因为

所以在中,.

中,.

又因为

所以.

因为

所以.

中,

所以.

中,

,即.

因为平面平面

所以平面.

,连接.

因为平面平面,所以.

平面.

平面,所以.

所以为二面角的平面角.

中,

所以

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,底面为菱形, 相交于点,四边形为直角梯形, ,平面底面.

(1)证明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一个长方形木块,三个侧面积分别为81224,现将其削成一个正四面体模型,则该正四面体模型棱长的最大值为(

A.2B.C.4D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的单调区间;

2)若当时,总有,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数上递减,在上递增,求实数的值.

2)若函数在定义域上不单调,求实数的取值范围.

3)若方程有两个不等实数根,求实数的取值范围,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线与抛物线交于为抛物线上一点.

(1),求

(2)已知点,过点作直线分别交曲线,证明:在点运动过程中,直线始终过定点,并求出该定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】诚信是立身之本,道德之基,我校学生会创设了“诚信水站”,既便于学生用水,又推进诚信教育,并用“”表示每周“水站诚信度”,为了便于数据分析,以四周为一周期,如表为该水站连续十二周(共三个周期)的诚信数据统计:

第一周

第二周

第三周

第四周

第一周期

第二周期

第三周期

(Ⅰ)计算表中十二周“水站诚信度”的平均数

(Ⅱ)若定义水站诚信度高于的为“高诚信度”,以下为“一般信度”则从每个周期的前两周中随机抽取两周进行调研,计算恰有两周是“高诚信度”的概率;

(Ⅲ)已知学生会分别在第一个周期的第四周末和第二个周期的第四周末各举行了一次“以诚信为本”的主题教育活动,根据已有数据,说明两次主题教育活动的宣传效果,并根据已有数据陈述理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆:的离心率为y轴于椭圆相交于AB两点,CD是椭圆上异于AB的任意两点,且直线ACBD相交于点M,直线ADBC相交于点N

求椭圆的方程;

求直线MN的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( ).

A. ,“”是“”的必要不充分条件

B. 为真命题”是“为真命题” 的必要不充分条件

C. 命题“,使得”的否定是:“

D. 命题:“”,则是真命题

查看答案和解析>>

同步练习册答案