精英家教网 > 高中数学 > 题目详情
9.已知P(x,y)(其中x≠0)为双曲线$\frac{{y}^{2}}{4}$-x2=1上任一点,过P点向双曲线的两条渐近线分别作垂线,垂足分别为A、B,则△PAB的面积为(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{8}{25}$D.与点P的位置有关

分析 由题意,O,P,A,B四点共圆,∠APB=∠AOB,tan$\frac{1}{2}∠AOB$=2,sin∠AOB=$\frac{4}{5}$,求出|PA||PB|,即可得出结论.

解答 解:由题意,O,P,A,B四点共圆,∠APB=∠AOB,tan$\frac{1}{2}∠AOB$=2,sin∠AOB=$\frac{4}{5}$,
设P(x,y),双曲线的渐近线方程为y=±2x,则|PA||PB|=$\frac{|2x+y|}{\sqrt{5}}•\frac{|2x-y|}{\sqrt{5}}$=$\frac{4}{5}$,
∴△PAB的面积为$\frac{1}{2}•$$\frac{4}{5}$•$\frac{4}{5}$=$\frac{8}{25}$.
故选C.

点评 本题考查双曲线的性质,考查三角形面积的计算,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{{\sqrt{6}}}{3}$,直线y=bx+2与圆x2+y2=2相切.
(1)求椭圆的方程;
(2)已知定点E(1,0),若直线y=kx+2(k≠0)与椭圆相交于C,D两点,试判断是否存在实数k,使得以CD为直径的圆过定点E?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知棱长均为1的四棱锥顶点都在球O1的表面上,棱长均为2的四面体顶点都在球O2的表面上,若O1、O2的表面积分别是S1、S2,则S1:S2=(  )
A.2:3B.1:3C.1:4D.1:$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知i为虚数单位,则复数$\frac{1+i}{2i}$=(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.
(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;
(2)当D、E分别为线段VA、VC上的中点,且BC=1,CA=$\sqrt{3}$,VC=2时,求三棱锥A-BDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知不等式|2x-3|<x与不等式x2-mx+n<0的解集相同.
(Ⅰ)求m-n;
(Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m-n,求a+b+c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆的方程(x-2)2+y2=1,过圆外一点P(3,4)作一条直线与圆交于A,B两点,那么$\overrightarrow{PA}•\overrightarrow{PB}$=16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦分别为F1,F2,离心率为$\frac{\sqrt{2}}{2}$,过点F1且垂直于x轴的直线被椭圆截得的弦长为2,直线l:y=kx+m与椭圆交于不同的A、B两点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若在椭圆C上存在点Q满足:$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ$\overrightarrow{OQ}$(O为坐标原点),求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若满足条件a=4,A=30°的△ABC有且只有两个,则边c所有可能的值域构成的集合是(4,8)(用区间表示).

查看答案和解析>>

同步练习册答案