精英家教网 > 高中数学 > 题目详情
17.已知i为虚数单位,则复数$\frac{1+i}{2i}$=(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

分析 直接利用复数代数形式的乘除运算化简得答案.

解答 解:$\frac{1+i}{2i}$=$\frac{(1+i)•(-i)}{-2{i}^{2}}=\frac{1-i}{2}=\frac{1}{2}-\frac{i}{2}$.
故选:B.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知f(x)=x3-3x,并设:
p:?c∈R,f(f(x))=c至少有3个实根;
q:当c∈(-2,2)时,方程f(f(x))=c有9个实根;
r:当c=2时,方程f(f(x))=c有5个实根.
则下列命题为真命题的是(  )
A.¬p∨¬rB.¬q∧rC.仅有rD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.袋中有大小质地完全相同的2个红球和3个黑球,不放回地摸出两球,设“第一次摸得红球”为事件A,“摸得的两球同色”为事件B,则概率P(B|A)为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在△ABC中,∠BAC=90°,点D为斜边BC上一点,且AC=CD=2.
(1)若CD=2BD,求AD的值;
(2)若AD=$\sqrt{2}$BD,求角B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若等比数列{an}的公比为2,且a3-a1=2$\sqrt{3}$,则$\frac{1}{{{a}_{1}}^{2}}$+$\frac{1}{{{a}_{2}}^{2}}$+…+$\frac{1}{{{a}_{n}}^{2}}$=1-$\frac{1}{{4}^{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.将函数f(x)=$\sqrt{3}$sinx+cosx的图象向右平移$\frac{π}{3}$后得到函数g(x)的图象,则函数g(x)的图象的一条对称轴方程是(  )
A.x=$\frac{π}{3}$B.x=$\frac{π}{6}$C.x=-$\frac{π}{6}$D.x=-$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知P(x,y)(其中x≠0)为双曲线$\frac{{y}^{2}}{4}$-x2=1上任一点,过P点向双曲线的两条渐近线分别作垂线,垂足分别为A、B,则△PAB的面积为(  )
A.$\frac{2}{5}$B.$\frac{4}{5}$C.$\frac{8}{25}$D.与点P的位置有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图P为平行四边形ABCD所在平面外一点,Q为PA的中点,O为AC与BD的交点,下面说法错误的是(  ) 
A.OQ∥平面PCDB.PC∥平面BDQC.AQ∥平面PCDD.CD∥平面PAB

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知递增等差数列{an}满足a1•a4=7,a2+a3=8.
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}{a_{n+1}}}}$,数列{bn}的前n项和为Sn,求证:Sn$<\frac{1}{2}$.

查看答案和解析>>

同步练习册答案