精英家教网 > 高中数学 > 题目详情
5.如图,在△ABC中,∠BAC=90°,点D为斜边BC上一点,且AC=CD=2.
(1)若CD=2BD,求AD的值;
(2)若AD=$\sqrt{2}$BD,求角B的正弦值.

分析 (1)依题意得DB=1,BC=CD+DB=3.在Rt△ABC中,求出cosC,在△ADC中,由余弦定理得:$A{D}^{2}=A{C}^{2}+C{D}^{2}-2AC•CDcosC=\frac{8}{3}$,即可.
(2)在△ADC中,由余弦定理得:AD2=8-8cosC.在Rt△ABC中,$BC=\frac{AC}{cosC}=\frac{2}{cosC}$,可得BD$\frac{2}{cosC}-2=\frac{2-2cosC}{cosC}$.由8-8cosC=2•($\frac{2-2cosC}{cosC}$)2.解得cosC即可.

解答 解:(1)∵CD=2DB=2,∴DB=1,BC=CD+DB=3.
在Rt△ABC中,cosC=$\frac{AC}{BC}=\frac{2}{3}$,
在△ADC中,由余弦定理得:$A{D}^{2}=A{C}^{2}+C{D}^{2}-2AC•CDcosC=\frac{8}{3}$,
∴AD=$\frac{2\sqrt{6}}{3}$.
(2)在△ADC中,由余弦定理得:AD2=AC2+CD2-2AC•CDcosC=8-8cosC.
在Rt△ABC中,$BC=\frac{AC}{cosC}=\frac{2}{cosC}$,∴BD=BC-CD=$\frac{2}{cosC}-2=\frac{2-2cosC}{cosC}$.
∵AD2=2DB2,∴8-8cosC=2•($\frac{2-2cosC}{cosC}$)2.解得cosC=$\frac{\sqrt{5}-1}{2}$,
∵$B+C=\frac{π}{2}$,∴sinB=cosC=$\frac{\sqrt{5}-1}{2}$.

点评 本题考查了正弦、余弦定理在解三角形中的应用,同时考查了方程的思想及运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\left\{\begin{array}{l}1-{log_a}(x+2),x≥0\\ g(x),x<0\end{array}\right.$是奇函数,则方程g(x)=2的根为(  )
A.$-\frac{3}{2}$B.$\frac{3}{2}$C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等比数列{an}中,a1=1,a4=8,则a7=(  )
A.64B.32C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{\sqrt{1-co{s}^{2}x}}{cosx}$(  )
A.在(-$\frac{π}{2}$,$\frac{π}{2}$)上递增B.在(-$\frac{π}{2}$,0]上递增,在(0,$\frac{π}{2}$)上递减
C.在(-$\frac{π}{2}$,$\frac{π}{2}$)上递减D.在(-$\frac{π}{2}$,0]上递减,在(0,$\frac{π}{2}$)上递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知棱长均为1的四棱锥顶点都在球O1的表面上,棱长均为2的四面体顶点都在球O2的表面上,若O1、O2的表面积分别是S1、S2,则S1:S2=(  )
A.2:3B.1:3C.1:4D.1:$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若圆C:x2+y2-2x+4y=0上存在两点A,B关于直线l:y=kx-1对称,则k的值为(  )
A.-1B.-$\frac{3}{2}$C.-$\frac{5}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知i为虚数单位,则复数$\frac{1+i}{2i}$=(  )
A.$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$-$\frac{1}{2}$iC.-$\frac{1}{2}$+$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知不等式|2x-3|<x与不等式x2-mx+n<0的解集相同.
(Ⅰ)求m-n;
(Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m-n,求a+b+c的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在下列条件中:①b2-4ac≥0;②ac>0;③ab<0且ac>0;④b2-4ac≥0,$\frac{b}{a}<0,\frac{c}{a}$>0中能成为“使二次方程ax2+bx+c=0的两根为正数”的必要非充分条件是(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

同步练习册答案