精英家教网 > 高中数学 > 题目详情
16.在等比数列{an}中,a1=1,a4=8,则a7=(  )
A.64B.32C.16D.12

分析 利用等比数列的通项公式求出公比,由此能求出a7的值.

解答 解:∵在等比数列{an}中,a1=1,a4=8,
∴${a}_{4}={a}_{1}{q}^{3}$,即8=q3,解得q=2,
a7=${a}_{1}{q}^{6}$=1×26=64.
故选:A.

点评 本题考查等比数列的第7项的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.随着教育制度和高考考试制度的改革,高校选拔人才的方式越来越多.某高校向一基地 学校投放了一个保送生名额,先由该基地学校初选出10名优秀学生,然后参与高校设置的 考核,考核设置了难度不同的甲、乙两个方案,每个方案都有M(文化)、N(面试)两个考核内 容,最终选择考核成绩总分第一名的同学定为该高校在基地校的保送生.假设每位同学完成 每个方案中的M、N两个考核内容的得分是相互独立的.根据考核前的估计,某同学完成甲 方案和乙方案的M、N两个考核内容的情况如表:
表1:甲方案
考核内容M(文化)N(面试)
得分100805020
概率$\frac{3}{4}$$\frac{1}{4}$$\frac{3}{4}$$\frac{1}{4}$
表2:乙方案
考核内容M(文化)N(面试)
得分90603010
概率$\frac{9}{10}$$\frac{1}{10}$$\frac{9}{10}$$\frac{1}{10}$
已知该同学最后一个参与考核,之前的9位同学的最高得分为125分.
(I)若该同学希望获得保送资格,应该选择哪个方案?请说明理由,并求其在该方案下 获得保送资格的概率;
(II)若该同学选用乙方案,求其所得成绩X的分布列及其数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=x3-3x,并设:
p:?c∈R,f(f(x))=c至少有3个实根;
q:当c∈(-2,2)时,方程f(f(x))=c有9个实根;
r:当c=2时,方程f(f(x))=c有5个实根.
则下列命题为真命题的是(  )
A.¬p∨¬rB.¬q∧rC.仅有rD.p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的左、右焦点为F1(-c,0),F2(c,0),若直线y=2x与双曲线的一个交点的横坐标为c,则双曲线的离心率为$\sqrt{2}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是kA,kB,规定φ(A,B)=$\frac{{|{k_A}-{k_B}|}}{{|AB{|^2}}}$叫做曲线y=f(x)在点A、B之间的“平方弯曲度”.设曲线y=ex+x上不同两点A(x1,y1),B(x2,y2),且x1-x2=1,则φ(A,B)的取值范围是(0,$\frac{\sqrt{2}-1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设实数x,y满足$\left\{\begin{array}{l}{y≤2}\\{x+y≥1}\\{y≥x}\end{array}\right.$,则2y-x的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.袋中有大小质地完全相同的2个红球和3个黑球,不放回地摸出两球,设“第一次摸得红球”为事件A,“摸得的两球同色”为事件B,则概率P(B|A)为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在△ABC中,∠BAC=90°,点D为斜边BC上一点,且AC=CD=2.
(1)若CD=2BD,求AD的值;
(2)若AD=$\sqrt{2}$BD,求角B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图P为平行四边形ABCD所在平面外一点,Q为PA的中点,O为AC与BD的交点,下面说法错误的是(  ) 
A.OQ∥平面PCDB.PC∥平面BDQC.AQ∥平面PCDD.CD∥平面PAB

查看答案和解析>>

同步练习册答案