精英家教网 > 高中数学 > 题目详情
11.函数y=f(x)图象上不同两点A(x1,y1),B(x2,y2)处的切线的斜率分别是kA,kB,规定φ(A,B)=$\frac{{|{k_A}-{k_B}|}}{{|AB{|^2}}}$叫做曲线y=f(x)在点A、B之间的“平方弯曲度”.设曲线y=ex+x上不同两点A(x1,y1),B(x2,y2),且x1-x2=1,则φ(A,B)的取值范围是(0,$\frac{\sqrt{2}-1}{2}$].

分析 求出y′=ex,+1,由定义求出两点A(x1,y1),B(x2,y2)之间的“平方弯曲度”,由题意可令t=e${\;}^{{x}_{1}}$-e${\;}^{{x}_{2}}$,
可设f(t)=$\frac{t}{1+(t+1)^{2}}$,t>0,求出导数和单调区间、极大值和最大值,即可得到所求范围.

解答 解:y=ex+x的导数为y′=ex+1,
kA=e${\;}^{{x}_{1}}$+1,kB=e${\;}^{{x}_{2}}$+1,
φ(A,B)=$\frac{{|{k_A}-{k_B}|}}{{|AB{|^2}}}$=$\frac{|{e}^{{x}_{1}}-{e}^{{x}_{2}}|}{({x}_{1}-{x}_{2})^{2}+({e}^{{x}_{1}}-{e}^{{x}_{2}}+{x}_{1}-{x}_{2})^{2}}$
=$\frac{|{e}^{{x}_{1}}-{e}^{{x}_{2}}|}{1+({e}^{{x}_{1}}-{e}^{{x}_{2}}+1)^{2}}$,
x1-x2=1,可得x1>x2,e${\;}^{{x}_{1}}$>e${\;}^{{x}_{2}}$,
可令t=e${\;}^{{x}_{1}}$-e${\;}^{{x}_{2}}$,
可设f(t)=$\frac{t}{1+(t+1)^{2}}$,t>0,
f′(t)=$\frac{1+(t+1)^{2}-2t(t+1)}{(1+(t+1)^{2})^{2}}$=$\frac{2-{t}^{2}}{(1+(t+1))^{2}}$,
当0<t<$\sqrt{2}$时,f′(t)>0,f(t)递增;
当t>$\sqrt{2}$时,f′(t)<0,f(t)递减.
则当t=$\sqrt{2}$处f(t)取得极大值,且为最大值$\frac{\sqrt{2}}{1+(\sqrt{2}+1)^{2}}$=$\frac{\sqrt{2}-1}{2}$.
则φ(A,B)∈(0,$\frac{\sqrt{2}-1}{2}$].
故答案为:(0,$\frac{\sqrt{2}-1}{2}$].

点评 本题考查新定义的理解和运用,考查导数的几何意义和导数的运用:求单调区间、极值和最值,考查构造法和换元法,化简整理能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0
(Ⅰ)求角C的大小.
(Ⅱ)若c=6,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c若c-a=2acosB,则$\frac{si{n}^{2}A}{sin(B-A)}$的取值范围是($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{{\sqrt{6}}}{3}$,直线y=bx+2与圆x2+y2=2相切.
(1)求椭圆的方程;
(2)已知定点E(1,0),若直线y=kx+2(k≠0)与椭圆相交于C,D两点,试判断是否存在实数k,使得以CD为直径的圆过定点E?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}-sinx,x>0\\ sinx,x≤0\end{array}\right.$,则下列结论正确的是(  )
A.f(x)是奇函数
B.f(x)是偶函数
C.f(x)是周期函数
D.f(x)在$[-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ](k∈z)$上为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在等比数列{an}中,a1=1,a4=8,则a7=(  )
A.64B.32C.16D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,E是园O内两条弦AB和CD的交点,过AD延长线上一点F作圆O的切线FG,G为切点,已知EF=FG.求证:EF∥CB.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知棱长均为1的四棱锥顶点都在球O1的表面上,棱长均为2的四面体顶点都在球O2的表面上,若O1、O2的表面积分别是S1、S2,则S1:S2=(  )
A.2:3B.1:3C.1:4D.1:$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知圆的方程(x-2)2+y2=1,过圆外一点P(3,4)作一条直线与圆交于A,B两点,那么$\overrightarrow{PA}•\overrightarrow{PB}$=16.

查看答案和解析>>

同步练习册答案