分析 根据所给的二次函数的性质,写出对于对称轴所在的区间不同时,对应的函数的最大值,写成一个分段函数形式.
解答 解:函数f(x)=x2-2tx+1图象的对称轴是x=t,函数在区间[2,5]上单调,故t≤2或t≥5,
若t≤2,则函数f(x)在区间[2.5]上是增函数,
故f(x)max=f(5)=25-10t+1=8解得t=$\frac{9}{5}$;
若t≥5,函数f(x)在区间[2,5]上是减函数,
此时f(x)max=f(2)=4-4t+1=8,
解得t=-$\frac{3}{4}$,与t≥5矛盾,
综上所述,t=$\frac{9}{5}$.
点评 本题考查了函数存在的充要条件以及二次函数最大值的求法,解题时要学会分类讨论,做到不重不漏.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0.3456 | B. | 0.3546 | C. | 0.375 6 | D. | 0.457 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $9\sqrt{2}$ | B. | 9 | C. | 3$\sqrt{3}$ | D. | 2$\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | 2-$\frac{\sqrt{2}}{2}$ | D. | 2+$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{10}$ | B. | 2$\sqrt{13}$ | C. | 2$\sqrt{11}$ | D. | 4$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com