精英家教网 > 高中数学 > 题目详情
19.若实数x,y满足不等式组$\left\{\begin{array}{l}x+3y-3≤0\\ x-y+1≥0\\ y≥-1\end{array}\right.$则z=2x+y的取值范围是(  )
A.[-3,11]B.[-3,13]C.[-5,13]D.[-5,11]

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,即可求z的取值范围.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点B时,直线y=-2x+z的截距最大,
此时z最大
由 $\left\{\begin{array}{l}{x+3y-3=0}\\{y=-1}\end{array}\right.$$\left\{\begin{array}{l}{x=6}\\{y=-1}\end{array}\right.$,解得,即B(6,-1),
代入目标函数z=2x+y得z=2×6-1=11.
即目标函数z=2x+y的最大值为11.
当直线y=-2x+z经过点A时,直线y=-2x+z的截距最小,
此时z最小.
由 $\left\{\begin{array}{l}{x-y+1=0}\\{y=-1}\end{array}\right.$,解得 $\left\{\begin{array}{l}{x=-2}\\{y=-1}\end{array}\right.$,即A(-2,-1),
代入目标函数z=2x+y得z=2×(-2)-1=-5.
即目标函数z=2x+y的最小值为-5.
目标函数z=2x+y的取值范围是[-5,11],
故选:D.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.如果两条直线a∥b,且a∥面α,则b与α的位置关系是b∥α或b?α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若a,b,c是非零实数,x=$\frac{a}{|a|}$+$\frac{b}{|b|}$+$\frac{c}{|c|}$,则由数x组成的集合可以表示为{3,-3,1,-1}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.函数f(x)=loga(x+$\sqrt{{x}^{2}+1}$)为奇函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3+ax2-x+c,且a=f′($\frac{2}{3}$).
(1)求a的值;
(2)求函数f(x)的单调区间;
(3)设函数g(x)=[f(x)-x3]•ex,若函数g(x)在x∈[-3,2]上单调递增,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.设复平面内点z0=1+2i关于直线l:|z-2-2i|=|z|的对称点的复数表示是i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设动点(x,y)满足不等式组$\left\{\begin{array}{l}(x-y+1)(x+y-4)≥0\\ x≥3\end{array}\right.$,则x2+y2的最小值是(  )
A.$\sqrt{5}$B.$\sqrt{10}$C.$\frac{17}{2}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.圆x2+y2=4上恰有两个点到3x-4y+c=0的距离等于1,则c的取值范围为(-15,-5)∪(5,15).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设点P是△ABC内一点(不包括边界),且$\overrightarrow{AP}$=m$\overrightarrow{AB}$+n$\overrightarrow{AC}$(m.n∈R),则m2+n2-2m-2n+3的取值范围是$(\frac{3}{2},3)$.

查看答案和解析>>

同步练习册答案