精英家教网 > 高中数学 > 题目详情

【题目】恒成立.

1)求实数的值;

2)证明: 存在唯一的极大值点,且

【答案】1;(2)证明见解析

【解析】试题分析:(1)将问题转化为恒成立的问题处理,分 两种情况判断即可;(2)由(1)得,故问题可转化为有零点的问题,并进一步得到存在唯一的极大值点。然后根据函数的单调性可证得

试题解析

1)解:由条件知恒成立,

恒成立,

,则恒成立,

①当时, 上单调递增,

时, ,与矛盾,不合题意。

②当时, 单调递减,在单调递增,

有极小值,也为最小值,且最小值为

恒成立,

单调递增,在单调递减,而

所以由解得

综上

2由条件得

所以单调递减,在单调递增

由零点存在定理及的单调性知,方程有唯一根,设为

从而有两个零点0

所以单调递增,在单调递减,在单调递增,

从而存在唯一的极大值点

等号不成立,所以

单调递增,

所以

综上可得成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A、B,M为抛物线 上的动点.
(1)若|AB|=8,求抛物线的方程;
(2)求SABM的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

1)讨论函数的单调性;

2)若,求函数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正项数列{an},a1=1,an=an+12+2an+1(Ⅰ)求证:数列{log2(an+1)}为等比数列:
(Ⅱ)设bn=n1og2(an+1),数列{bn}的前n项和为Sn , 求证:1≤Sn<4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣ ﹣2lnx,a∈R.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个极值点x1 , x2 , 且x1<x2 , ①求a的取值范围;
②证明:f(x2)<x2﹣1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx.
(1)求f(x)的单调区间和极值;
(2)若对任意 恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】A,B两名同学在5次数学考试中的成绩统计如下面的茎叶图所示,若A,B两人的平均成绩分别是xA , xB , 观察茎叶图,下列结论正确的是(
A.xA<xB , B比A成绩稳定
B.xA>xB , B比A成绩稳定
C.xA<xB , A比B成绩稳定
D.xA>xB , A比B成绩稳定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年3月14日,“ofo共享单车”终于来到芜湖,ofo共享单车又被亲切称作“小黄车”是全球第一个无桩共享单车平台,开创了首个“单车共享”模式.相关部门准备对该项目进行考核,考核的硬性指标是:市民对该项目的满意指数不低于0.8,否则该项目需进行整改,该部门为了了解市民对该项目的满意程度,随机访问了使用共享单车的100名市民,并根据这100名市民对该项目满意程度的评分,绘制了如下频率分布直方图: (I)为了了解部分市民对“共享单车”评分较低的原因,该部门从评分低于60分的市民中随机抽取2人进行座谈,求这2人评分恰好都在[50,60)的概率;
(II)根据你所学的统计知识,判断该项目能否通过考核,并说明理由.
(注:满意指数=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集U=R,集合A={x|﹣1<x<1},B={x|2≤4x≤8},C={x|a﹣4<x≤2a﹣7}.
(1)求(UA)∩B;
(2)若A∩C=C,求实数a的取值范围.

查看答案和解析>>

同步练习册答案