| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
分析 由正弦定理化简已知等式可得a+b=$\sqrt{3}c$,结合已知ab=$\frac{2}{3}$c2,可求a2+b2=$\frac{5{c}^{2}}{3}$,利用余弦定理可得cos∠C=$\frac{1}{2}$,结合范围∠C∈(0,180°),即可得解∠C=60°.
解答 解:在△ABC中,∵sinA+sinB=$\sqrt{3}$sinC,
∴由正弦定理可得:a+b=$\sqrt{3}c$,两边平方可得:a2+b2=3c2-2ab,
又∵ab=$\frac{2}{3}$c2,
∴a2+b2=3c2-2×$\frac{2}{3}$c2=$\frac{5{c}^{2}}{3}$,
∴由余弦定理可得:cos∠C=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{\frac{5{c}^{2}}{3}-{c}^{2}}{2×\frac{2{c}^{2}}{3}}$=$\frac{1}{2}$,
∵∠C∈(0,180°),
∴∠C=60°.
故选:B.
点评 本题主要考查了正弦定理,余弦定理,特殊角的三角函数值在解三角形中的应用,考查了转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | i | C. | 1 | D. | -i |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=2x-1(x∈R) | B. | f(m)=2m-1(m>2) | C. | f(x)=2x+1(x>2) | D. | f(x)=x-1(x<-1) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | 3 | C. | $\frac{1}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com