分析 (1)求出函数的导数,得到0,2是方程3x2+2ax+b=0的根,代入方程解出a,b的值即可;
(2)求出F(x)在[0,1]的最小值,问题转化为F(1)+c≤c2-2,解出即可.
解答 解:(1)F(x)=${∫}_{0}^{x}$(3t2+2at+b)dt=x3+ax2+bx+c,F′(x)=3x2+2ax+b,
函数F(x)在x=0,x=2处取得极值,
∴0,2是方程3x2+2ax+b=0的根,
把x=0,2代入得:$\left\{\begin{array}{l}{b=0}\\{12+4a+b=0}\end{array}\right.$,
解得a=-3,b=0;
(2)由(1)得F(x)=x3-3x2+c,
F′(x)=3x2-6x=3x(x-2),
令F′(x)<0,解得:0<x<2,
∴函数F(x)在[0,1]递减,
∴F(x)min=F(1)=c-2,
若x∈[0,1],F(x)+c≤c2-2恒成立,
∴c-2+c≤c2-2,∴c2-2c≥0,
解得c≤0或c≥2.
点评 本题考查了函数的单调性、极值问题,考查导数的应用以及函数恒成立问题,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | 30° | B. | 60° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | 8 | D. | 10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com